Using a new uncertainty measure to determine optimal bases for signal representations

We use a new uncertainty measure, H/sub p/, that predicts the compactness of digital signal representations to determine a good (non-orthogonal) set of basis vectors. The measure uses the entropy of the signal and its Fourier transform in a manner that is similar to the use of the signal and its Fou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Przebinda, T., DeBrunner, V., Ozaydin, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1368 vol.3
container_issue
container_start_page 1365
container_title
container_volume 3
creator Przebinda, T.
DeBrunner, V.
Ozaydin, M.
description We use a new uncertainty measure, H/sub p/, that predicts the compactness of digital signal representations to determine a good (non-orthogonal) set of basis vectors. The measure uses the entropy of the signal and its Fourier transform in a manner that is similar to the use of the signal and its Fourier transform in the Heisenberg uncertainty principle. The measure explains why the level of discretization of continuous basis signals can be very important to the compactness of representation. Our use of the measure indicates that a mixture of (non-orthogonal) sinusoidal and impulsive or "blocky" basis functions may be best for compactly representing signals.
doi_str_mv 10.1109/ICASSP.1999.756234
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_756234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>756234</ieee_id><sourcerecordid>756234</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-e48ef27b0d89a0d999acd3045a3521d04a45efba0eb8342f34ce632d9d89dd343</originalsourceid><addsrcrecordid>eNotkM1qwzAQhEV_oGmaF8hJL2B3pZVs61hC_yDQQhroLcjROqgkcpAUSt6-gnQuA8swfDuMzQXUQoB5fF88rVaftTDG1K1uJKorNpHYmkoY-L5m99B2gBqUwBs2EVpC1Qhl7tgspR8oUlpDixO2XicfdtzyQL_8FLYUs_Uhn_mBbDpF4nnkjjLFgw_Ex2P2B7vnvU2U-DBGnvwulEOkY6REIdvsx5Ae2O1g94lm_z5l65fnr8Vbtfx4LejLykvAXJHqaJBtD64zFlx5xm4dFjaLWgoHyipNQ2-B-g6VHFBtqUHpTMk7hwqnbH7p9US0OcYCF8-byyD4B1NUVJE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using a new uncertainty measure to determine optimal bases for signal representations</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Przebinda, T. ; DeBrunner, V. ; Ozaydin, M.</creator><creatorcontrib>Przebinda, T. ; DeBrunner, V. ; Ozaydin, M.</creatorcontrib><description>We use a new uncertainty measure, H/sub p/, that predicts the compactness of digital signal representations to determine a good (non-orthogonal) set of basis vectors. The measure uses the entropy of the signal and its Fourier transform in a manner that is similar to the use of the signal and its Fourier transform in the Heisenberg uncertainty principle. The measure explains why the level of discretization of continuous basis signals can be very important to the compactness of representation. Our use of the measure indicates that a mixture of (non-orthogonal) sinusoidal and impulsive or "blocky" basis functions may be best for compactly representing signals.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 0780350413</identifier><identifier>ISBN: 9780780350410</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1999.756234</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical signal processing ; Electric variables measurement ; Entropy ; Filter bank ; Fourier transforms ; Mathematics ; Measurement uncertainty ; Signal processing algorithms ; Signal representations ; Time frequency analysis</subject><ispartof>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), 1999, Vol.3, p.1365-1368 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/756234$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/756234$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Przebinda, T.</creatorcontrib><creatorcontrib>DeBrunner, V.</creatorcontrib><creatorcontrib>Ozaydin, M.</creatorcontrib><title>Using a new uncertainty measure to determine optimal bases for signal representations</title><title>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258)</title><addtitle>ICASSP</addtitle><description>We use a new uncertainty measure, H/sub p/, that predicts the compactness of digital signal representations to determine a good (non-orthogonal) set of basis vectors. The measure uses the entropy of the signal and its Fourier transform in a manner that is similar to the use of the signal and its Fourier transform in the Heisenberg uncertainty principle. The measure explains why the level of discretization of continuous basis signals can be very important to the compactness of representation. Our use of the measure indicates that a mixture of (non-orthogonal) sinusoidal and impulsive or "blocky" basis functions may be best for compactly representing signals.</description><subject>Biomedical signal processing</subject><subject>Electric variables measurement</subject><subject>Entropy</subject><subject>Filter bank</subject><subject>Fourier transforms</subject><subject>Mathematics</subject><subject>Measurement uncertainty</subject><subject>Signal processing algorithms</subject><subject>Signal representations</subject><subject>Time frequency analysis</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>0780350413</isbn><isbn>9780780350410</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM1qwzAQhEV_oGmaF8hJL2B3pZVs61hC_yDQQhroLcjROqgkcpAUSt6-gnQuA8swfDuMzQXUQoB5fF88rVaftTDG1K1uJKorNpHYmkoY-L5m99B2gBqUwBs2EVpC1Qhl7tgspR8oUlpDixO2XicfdtzyQL_8FLYUs_Uhn_mBbDpF4nnkjjLFgw_Ex2P2B7vnvU2U-DBGnvwulEOkY6REIdvsx5Ae2O1g94lm_z5l65fnr8Vbtfx4LejLykvAXJHqaJBtD64zFlx5xm4dFjaLWgoHyipNQ2-B-g6VHFBtqUHpTMk7hwqnbH7p9US0OcYCF8-byyD4B1NUVJE</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Przebinda, T.</creator><creator>DeBrunner, V.</creator><creator>Ozaydin, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Using a new uncertainty measure to determine optimal bases for signal representations</title><author>Przebinda, T. ; DeBrunner, V. ; Ozaydin, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-e48ef27b0d89a0d999acd3045a3521d04a45efba0eb8342f34ce632d9d89dd343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biomedical signal processing</topic><topic>Electric variables measurement</topic><topic>Entropy</topic><topic>Filter bank</topic><topic>Fourier transforms</topic><topic>Mathematics</topic><topic>Measurement uncertainty</topic><topic>Signal processing algorithms</topic><topic>Signal representations</topic><topic>Time frequency analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Przebinda, T.</creatorcontrib><creatorcontrib>DeBrunner, V.</creatorcontrib><creatorcontrib>Ozaydin, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Przebinda, T.</au><au>DeBrunner, V.</au><au>Ozaydin, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using a new uncertainty measure to determine optimal bases for signal representations</atitle><btitle>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258)</btitle><stitle>ICASSP</stitle><date>1999</date><risdate>1999</risdate><volume>3</volume><spage>1365</spage><epage>1368 vol.3</epage><pages>1365-1368 vol.3</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>0780350413</isbn><isbn>9780780350410</isbn><abstract>We use a new uncertainty measure, H/sub p/, that predicts the compactness of digital signal representations to determine a good (non-orthogonal) set of basis vectors. The measure uses the entropy of the signal and its Fourier transform in a manner that is similar to the use of the signal and its Fourier transform in the Heisenberg uncertainty principle. The measure explains why the level of discretization of continuous basis signals can be very important to the compactness of representation. Our use of the measure indicates that a mixture of (non-orthogonal) sinusoidal and impulsive or "blocky" basis functions may be best for compactly representing signals.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1999.756234</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), 1999, Vol.3, p.1365-1368 vol.3
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_756234
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical signal processing
Electric variables measurement
Entropy
Filter bank
Fourier transforms
Mathematics
Measurement uncertainty
Signal processing algorithms
Signal representations
Time frequency analysis
title Using a new uncertainty measure to determine optimal bases for signal representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A41%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20a%20new%20uncertainty%20measure%20to%20determine%20optimal%20bases%20for%20signal%20representations&rft.btitle=1999%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing.%20Proceedings.%20ICASSP99%20(Cat.%20No.99CH36258)&rft.au=Przebinda,%20T.&rft.date=1999&rft.volume=3&rft.spage=1365&rft.epage=1368%20vol.3&rft.pages=1365-1368%20vol.3&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=0780350413&rft.isbn_list=9780780350410&rft_id=info:doi/10.1109/ICASSP.1999.756234&rft_dat=%3Cieee_6IE%3E756234%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=756234&rfr_iscdi=true