Using a new uncertainty measure to determine optimal bases for signal representations
We use a new uncertainty measure, H/sub p/, that predicts the compactness of digital signal representations to determine a good (non-orthogonal) set of basis vectors. The measure uses the entropy of the signal and its Fourier transform in a manner that is similar to the use of the signal and its Fou...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use a new uncertainty measure, H/sub p/, that predicts the compactness of digital signal representations to determine a good (non-orthogonal) set of basis vectors. The measure uses the entropy of the signal and its Fourier transform in a manner that is similar to the use of the signal and its Fourier transform in the Heisenberg uncertainty principle. The measure explains why the level of discretization of continuous basis signals can be very important to the compactness of representation. Our use of the measure indicates that a mixture of (non-orthogonal) sinusoidal and impulsive or "blocky" basis functions may be best for compactly representing signals. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.1999.756234 |