Analysis of stochastic gradient identification of polynomial nonlinear systems with memory

This paper presents analytical, numerical and experimental results for a stochastic gradient adaptive scheme which identifies a polynomial-type nonlinear system with memory for noisy output observations. The analysis includes the computation of the stationary points, the mean square error surface, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Celka, P., Bershad, N.J., Vesin, J.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents analytical, numerical and experimental results for a stochastic gradient adaptive scheme which identifies a polynomial-type nonlinear system with memory for noisy output observations. The analysis includes the computation of the stationary points, the mean square error surface, and the mean behaviour of the algorithm for Gaussian data. Monte Carlo simulations confirm the theoretical predictions which show a small sensitivity to the observation noise.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.1999.756216