Direct-to-Reverberant Energy Ratio Estimation Using a First-Order Microphone

The direct-to-reverberant ratio (DRR) is an important characterization of a reverberant environment. This paper presents a novel blind DRR estimation method based on the coherence function between the sound pressure and particle velocity at a point. First, a general expression of coherence function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2017-02, Vol.25 (2), p.226-237
Hauptverfasser: Hanchi Chen, Abhayapala, Thushara Dheemantha, Samarasinghe, Prasanga N., Wen Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue 2
container_start_page 226
container_title IEEE/ACM transactions on audio, speech, and language processing
container_volume 25
creator Hanchi Chen
Abhayapala, Thushara Dheemantha
Samarasinghe, Prasanga N.
Wen Zhang
description The direct-to-reverberant ratio (DRR) is an important characterization of a reverberant environment. This paper presents a novel blind DRR estimation method based on the coherence function between the sound pressure and particle velocity at a point. First, a general expression of coherence function and DRR is derived in the spherical harmonic domain, without imposing assumptions on the reverberation. In this paper, DRR is expressed in terms of the coherence function as well as two parameters that are related to statistical characteristics of the reverberant environment. Then, a method to estimate the values of these two parameters using a microphone system capable of capturing first-order spherical harmonics is proposed, under three assumptions which are more realistic than the diffuse field model. Furthermore, a theoretical analysis on the use of plane wave model for direct path signal and its effect on DRR estimation is presented, and a rule of thumb is provided for determining whether the point source model should be used for the direct path signal. Finally, the ACE challenge dataset is used to validate the proposed DRR estimation method. The results show that the average full band estimation error is within 2 dB, with no clear trend of bias.
doi_str_mv 10.1109/TASLP.2016.2601222
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7546897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7546897</ieee_id><sourcerecordid>1855592925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-4729d40bbac0c238914fa8177e3472b3c80aa23d62ac5ae0656ea7c6692c47183</originalsourceid><addsrcrecordid>eNo9kFtPAjEQhRujiQT5A_qyic-L0-luu30kiJdkDQbhuemWAZfoLrbFhH_vIujTnGTOmcvH2DWHIeeg7-ajt_J1iMDlECVwRDxjPRSoUy0gO__TqOGSDULYAAAHpbXKeqy8rz25mMY2ndE3-Yq8bWIyaciv98nMxrpNJiHWnwfVJItQN-vEJg-1DzGd-iX55KV2vt2-tw1dsYuV_Qg0ONU-WzxM5uOntJw-Po9HZeqE0DHNFOplBlVlHTgUhebZyhZcKRJdqxKuAGtRLCVal1sCmUuyykmp0WWKF6LPbo9zt7792lGIZtPufNOtNLzI87x7FfPOhUdXd14InlZm67s__N5wMAdw5hecOYAzJ3Bd6OYYqonoP6DyTBZaiR90y2iX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855592925</pqid></control><display><type>article</type><title>Direct-to-Reverberant Energy Ratio Estimation Using a First-Order Microphone</title><source>IEEE Electronic Library (IEL)</source><creator>Hanchi Chen ; Abhayapala, Thushara Dheemantha ; Samarasinghe, Prasanga N. ; Wen Zhang</creator><creatorcontrib>Hanchi Chen ; Abhayapala, Thushara Dheemantha ; Samarasinghe, Prasanga N. ; Wen Zhang</creatorcontrib><description>The direct-to-reverberant ratio (DRR) is an important characterization of a reverberant environment. This paper presents a novel blind DRR estimation method based on the coherence function between the sound pressure and particle velocity at a point. First, a general expression of coherence function and DRR is derived in the spherical harmonic domain, without imposing assumptions on the reverberation. In this paper, DRR is expressed in terms of the coherence function as well as two parameters that are related to statistical characteristics of the reverberant environment. Then, a method to estimate the values of these two parameters using a microphone system capable of capturing first-order spherical harmonics is proposed, under three assumptions which are more realistic than the diffuse field model. Furthermore, a theoretical analysis on the use of plane wave model for direct path signal and its effect on DRR estimation is presented, and a rule of thumb is provided for determining whether the point source model should be used for the direct path signal. Finally, the ACE challenge dataset is used to validate the proposed DRR estimation method. The results show that the average full band estimation error is within 2 dB, with no clear trend of bias.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2016.2601222</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coherence ; Direct-to-reverberant energy ratio ; Energy consumption ; Estimating techniques ; Estimation ; Harmonic analysis ; higher order microphone ; Mathematical models ; Microphones ; Reverberation ; Sound pressure ; Speech ; Spherical harmonics ; spherical microphone array</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2017-02, Vol.25 (2), p.226-237</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-4729d40bbac0c238914fa8177e3472b3c80aa23d62ac5ae0656ea7c6692c47183</citedby><cites>FETCH-LOGICAL-c339t-4729d40bbac0c238914fa8177e3472b3c80aa23d62ac5ae0656ea7c6692c47183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7546897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7546897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hanchi Chen</creatorcontrib><creatorcontrib>Abhayapala, Thushara Dheemantha</creatorcontrib><creatorcontrib>Samarasinghe, Prasanga N.</creatorcontrib><creatorcontrib>Wen Zhang</creatorcontrib><title>Direct-to-Reverberant Energy Ratio Estimation Using a First-Order Microphone</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>The direct-to-reverberant ratio (DRR) is an important characterization of a reverberant environment. This paper presents a novel blind DRR estimation method based on the coherence function between the sound pressure and particle velocity at a point. First, a general expression of coherence function and DRR is derived in the spherical harmonic domain, without imposing assumptions on the reverberation. In this paper, DRR is expressed in terms of the coherence function as well as two parameters that are related to statistical characteristics of the reverberant environment. Then, a method to estimate the values of these two parameters using a microphone system capable of capturing first-order spherical harmonics is proposed, under three assumptions which are more realistic than the diffuse field model. Furthermore, a theoretical analysis on the use of plane wave model for direct path signal and its effect on DRR estimation is presented, and a rule of thumb is provided for determining whether the point source model should be used for the direct path signal. Finally, the ACE challenge dataset is used to validate the proposed DRR estimation method. The results show that the average full band estimation error is within 2 dB, with no clear trend of bias.</description><subject>Coherence</subject><subject>Direct-to-reverberant energy ratio</subject><subject>Energy consumption</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Harmonic analysis</subject><subject>higher order microphone</subject><subject>Mathematical models</subject><subject>Microphones</subject><subject>Reverberation</subject><subject>Sound pressure</subject><subject>Speech</subject><subject>Spherical harmonics</subject><subject>spherical microphone array</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtPAjEQhRujiQT5A_qyic-L0-luu30kiJdkDQbhuemWAZfoLrbFhH_vIujTnGTOmcvH2DWHIeeg7-ajt_J1iMDlECVwRDxjPRSoUy0gO__TqOGSDULYAAAHpbXKeqy8rz25mMY2ndE3-Yq8bWIyaciv98nMxrpNJiHWnwfVJItQN-vEJg-1DzGd-iX55KV2vt2-tw1dsYuV_Qg0ONU-WzxM5uOntJw-Po9HZeqE0DHNFOplBlVlHTgUhebZyhZcKRJdqxKuAGtRLCVal1sCmUuyykmp0WWKF6LPbo9zt7792lGIZtPufNOtNLzI87x7FfPOhUdXd14InlZm67s__N5wMAdw5hecOYAzJ3Bd6OYYqonoP6DyTBZaiR90y2iX</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Hanchi Chen</creator><creator>Abhayapala, Thushara Dheemantha</creator><creator>Samarasinghe, Prasanga N.</creator><creator>Wen Zhang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170201</creationdate><title>Direct-to-Reverberant Energy Ratio Estimation Using a First-Order Microphone</title><author>Hanchi Chen ; Abhayapala, Thushara Dheemantha ; Samarasinghe, Prasanga N. ; Wen Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-4729d40bbac0c238914fa8177e3472b3c80aa23d62ac5ae0656ea7c6692c47183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coherence</topic><topic>Direct-to-reverberant energy ratio</topic><topic>Energy consumption</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Harmonic analysis</topic><topic>higher order microphone</topic><topic>Mathematical models</topic><topic>Microphones</topic><topic>Reverberation</topic><topic>Sound pressure</topic><topic>Speech</topic><topic>Spherical harmonics</topic><topic>spherical microphone array</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanchi Chen</creatorcontrib><creatorcontrib>Abhayapala, Thushara Dheemantha</creatorcontrib><creatorcontrib>Samarasinghe, Prasanga N.</creatorcontrib><creatorcontrib>Wen Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hanchi Chen</au><au>Abhayapala, Thushara Dheemantha</au><au>Samarasinghe, Prasanga N.</au><au>Wen Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct-to-Reverberant Energy Ratio Estimation Using a First-Order Microphone</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>25</volume><issue>2</issue><spage>226</spage><epage>237</epage><pages>226-237</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASD8</coden><abstract>The direct-to-reverberant ratio (DRR) is an important characterization of a reverberant environment. This paper presents a novel blind DRR estimation method based on the coherence function between the sound pressure and particle velocity at a point. First, a general expression of coherence function and DRR is derived in the spherical harmonic domain, without imposing assumptions on the reverberation. In this paper, DRR is expressed in terms of the coherence function as well as two parameters that are related to statistical characteristics of the reverberant environment. Then, a method to estimate the values of these two parameters using a microphone system capable of capturing first-order spherical harmonics is proposed, under three assumptions which are more realistic than the diffuse field model. Furthermore, a theoretical analysis on the use of plane wave model for direct path signal and its effect on DRR estimation is presented, and a rule of thumb is provided for determining whether the point source model should be used for the direct path signal. Finally, the ACE challenge dataset is used to validate the proposed DRR estimation method. The results show that the average full band estimation error is within 2 dB, with no clear trend of bias.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2016.2601222</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9290
ispartof IEEE/ACM transactions on audio, speech, and language processing, 2017-02, Vol.25 (2), p.226-237
issn 2329-9290
2329-9304
language eng
recordid cdi_ieee_primary_7546897
source IEEE Electronic Library (IEL)
subjects Coherence
Direct-to-reverberant energy ratio
Energy consumption
Estimating techniques
Estimation
Harmonic analysis
higher order microphone
Mathematical models
Microphones
Reverberation
Sound pressure
Speech
Spherical harmonics
spherical microphone array
title Direct-to-Reverberant Energy Ratio Estimation Using a First-Order Microphone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct-to-Reverberant%20Energy%20Ratio%20Estimation%20Using%20a%20First-Order%20Microphone&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Hanchi%20Chen&rft.date=2017-02-01&rft.volume=25&rft.issue=2&rft.spage=226&rft.epage=237&rft.pages=226-237&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASLP.2016.2601222&rft_dat=%3Cproquest_RIE%3E1855592925%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855592925&rft_id=info:pmid/&rft_ieee_id=7546897&rfr_iscdi=true