Direct-to-Reverberant Energy Ratio Estimation Using a First-Order Microphone
The direct-to-reverberant ratio (DRR) is an important characterization of a reverberant environment. This paper presents a novel blind DRR estimation method based on the coherence function between the sound pressure and particle velocity at a point. First, a general expression of coherence function...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2017-02, Vol.25 (2), p.226-237 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | 2 |
container_start_page | 226 |
container_title | IEEE/ACM transactions on audio, speech, and language processing |
container_volume | 25 |
creator | Hanchi Chen Abhayapala, Thushara Dheemantha Samarasinghe, Prasanga N. Wen Zhang |
description | The direct-to-reverberant ratio (DRR) is an important characterization of a reverberant environment. This paper presents a novel blind DRR estimation method based on the coherence function between the sound pressure and particle velocity at a point. First, a general expression of coherence function and DRR is derived in the spherical harmonic domain, without imposing assumptions on the reverberation. In this paper, DRR is expressed in terms of the coherence function as well as two parameters that are related to statistical characteristics of the reverberant environment. Then, a method to estimate the values of these two parameters using a microphone system capable of capturing first-order spherical harmonics is proposed, under three assumptions which are more realistic than the diffuse field model. Furthermore, a theoretical analysis on the use of plane wave model for direct path signal and its effect on DRR estimation is presented, and a rule of thumb is provided for determining whether the point source model should be used for the direct path signal. Finally, the ACE challenge dataset is used to validate the proposed DRR estimation method. The results show that the average full band estimation error is within 2 dB, with no clear trend of bias. |
doi_str_mv | 10.1109/TASLP.2016.2601222 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7546897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7546897</ieee_id><sourcerecordid>1855592925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-4729d40bbac0c238914fa8177e3472b3c80aa23d62ac5ae0656ea7c6692c47183</originalsourceid><addsrcrecordid>eNo9kFtPAjEQhRujiQT5A_qyic-L0-luu30kiJdkDQbhuemWAZfoLrbFhH_vIujTnGTOmcvH2DWHIeeg7-ajt_J1iMDlECVwRDxjPRSoUy0gO__TqOGSDULYAAAHpbXKeqy8rz25mMY2ndE3-Yq8bWIyaciv98nMxrpNJiHWnwfVJItQN-vEJg-1DzGd-iX55KV2vt2-tw1dsYuV_Qg0ONU-WzxM5uOntJw-Po9HZeqE0DHNFOplBlVlHTgUhebZyhZcKRJdqxKuAGtRLCVal1sCmUuyykmp0WWKF6LPbo9zt7792lGIZtPufNOtNLzI87x7FfPOhUdXd14InlZm67s__N5wMAdw5hecOYAzJ3Bd6OYYqonoP6DyTBZaiR90y2iX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855592925</pqid></control><display><type>article</type><title>Direct-to-Reverberant Energy Ratio Estimation Using a First-Order Microphone</title><source>IEEE Electronic Library (IEL)</source><creator>Hanchi Chen ; Abhayapala, Thushara Dheemantha ; Samarasinghe, Prasanga N. ; Wen Zhang</creator><creatorcontrib>Hanchi Chen ; Abhayapala, Thushara Dheemantha ; Samarasinghe, Prasanga N. ; Wen Zhang</creatorcontrib><description>The direct-to-reverberant ratio (DRR) is an important characterization of a reverberant environment. This paper presents a novel blind DRR estimation method based on the coherence function between the sound pressure and particle velocity at a point. First, a general expression of coherence function and DRR is derived in the spherical harmonic domain, without imposing assumptions on the reverberation. In this paper, DRR is expressed in terms of the coherence function as well as two parameters that are related to statistical characteristics of the reverberant environment. Then, a method to estimate the values of these two parameters using a microphone system capable of capturing first-order spherical harmonics is proposed, under three assumptions which are more realistic than the diffuse field model. Furthermore, a theoretical analysis on the use of plane wave model for direct path signal and its effect on DRR estimation is presented, and a rule of thumb is provided for determining whether the point source model should be used for the direct path signal. Finally, the ACE challenge dataset is used to validate the proposed DRR estimation method. The results show that the average full band estimation error is within 2 dB, with no clear trend of bias.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2016.2601222</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coherence ; Direct-to-reverberant energy ratio ; Energy consumption ; Estimating techniques ; Estimation ; Harmonic analysis ; higher order microphone ; Mathematical models ; Microphones ; Reverberation ; Sound pressure ; Speech ; Spherical harmonics ; spherical microphone array</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2017-02, Vol.25 (2), p.226-237</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-4729d40bbac0c238914fa8177e3472b3c80aa23d62ac5ae0656ea7c6692c47183</citedby><cites>FETCH-LOGICAL-c339t-4729d40bbac0c238914fa8177e3472b3c80aa23d62ac5ae0656ea7c6692c47183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7546897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7546897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hanchi Chen</creatorcontrib><creatorcontrib>Abhayapala, Thushara Dheemantha</creatorcontrib><creatorcontrib>Samarasinghe, Prasanga N.</creatorcontrib><creatorcontrib>Wen Zhang</creatorcontrib><title>Direct-to-Reverberant Energy Ratio Estimation Using a First-Order Microphone</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>The direct-to-reverberant ratio (DRR) is an important characterization of a reverberant environment. This paper presents a novel blind DRR estimation method based on the coherence function between the sound pressure and particle velocity at a point. First, a general expression of coherence function and DRR is derived in the spherical harmonic domain, without imposing assumptions on the reverberation. In this paper, DRR is expressed in terms of the coherence function as well as two parameters that are related to statistical characteristics of the reverberant environment. Then, a method to estimate the values of these two parameters using a microphone system capable of capturing first-order spherical harmonics is proposed, under three assumptions which are more realistic than the diffuse field model. Furthermore, a theoretical analysis on the use of plane wave model for direct path signal and its effect on DRR estimation is presented, and a rule of thumb is provided for determining whether the point source model should be used for the direct path signal. Finally, the ACE challenge dataset is used to validate the proposed DRR estimation method. The results show that the average full band estimation error is within 2 dB, with no clear trend of bias.</description><subject>Coherence</subject><subject>Direct-to-reverberant energy ratio</subject><subject>Energy consumption</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Harmonic analysis</subject><subject>higher order microphone</subject><subject>Mathematical models</subject><subject>Microphones</subject><subject>Reverberation</subject><subject>Sound pressure</subject><subject>Speech</subject><subject>Spherical harmonics</subject><subject>spherical microphone array</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtPAjEQhRujiQT5A_qyic-L0-luu30kiJdkDQbhuemWAZfoLrbFhH_vIujTnGTOmcvH2DWHIeeg7-ajt_J1iMDlECVwRDxjPRSoUy0gO__TqOGSDULYAAAHpbXKeqy8rz25mMY2ndE3-Yq8bWIyaciv98nMxrpNJiHWnwfVJItQN-vEJg-1DzGd-iX55KV2vt2-tw1dsYuV_Qg0ONU-WzxM5uOntJw-Po9HZeqE0DHNFOplBlVlHTgUhebZyhZcKRJdqxKuAGtRLCVal1sCmUuyykmp0WWKF6LPbo9zt7792lGIZtPufNOtNLzI87x7FfPOhUdXd14InlZm67s__N5wMAdw5hecOYAzJ3Bd6OYYqonoP6DyTBZaiR90y2iX</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Hanchi Chen</creator><creator>Abhayapala, Thushara Dheemantha</creator><creator>Samarasinghe, Prasanga N.</creator><creator>Wen Zhang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170201</creationdate><title>Direct-to-Reverberant Energy Ratio Estimation Using a First-Order Microphone</title><author>Hanchi Chen ; Abhayapala, Thushara Dheemantha ; Samarasinghe, Prasanga N. ; Wen Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-4729d40bbac0c238914fa8177e3472b3c80aa23d62ac5ae0656ea7c6692c47183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coherence</topic><topic>Direct-to-reverberant energy ratio</topic><topic>Energy consumption</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Harmonic analysis</topic><topic>higher order microphone</topic><topic>Mathematical models</topic><topic>Microphones</topic><topic>Reverberation</topic><topic>Sound pressure</topic><topic>Speech</topic><topic>Spherical harmonics</topic><topic>spherical microphone array</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanchi Chen</creatorcontrib><creatorcontrib>Abhayapala, Thushara Dheemantha</creatorcontrib><creatorcontrib>Samarasinghe, Prasanga N.</creatorcontrib><creatorcontrib>Wen Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hanchi Chen</au><au>Abhayapala, Thushara Dheemantha</au><au>Samarasinghe, Prasanga N.</au><au>Wen Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct-to-Reverberant Energy Ratio Estimation Using a First-Order Microphone</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>25</volume><issue>2</issue><spage>226</spage><epage>237</epage><pages>226-237</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASD8</coden><abstract>The direct-to-reverberant ratio (DRR) is an important characterization of a reverberant environment. This paper presents a novel blind DRR estimation method based on the coherence function between the sound pressure and particle velocity at a point. First, a general expression of coherence function and DRR is derived in the spherical harmonic domain, without imposing assumptions on the reverberation. In this paper, DRR is expressed in terms of the coherence function as well as two parameters that are related to statistical characteristics of the reverberant environment. Then, a method to estimate the values of these two parameters using a microphone system capable of capturing first-order spherical harmonics is proposed, under three assumptions which are more realistic than the diffuse field model. Furthermore, a theoretical analysis on the use of plane wave model for direct path signal and its effect on DRR estimation is presented, and a rule of thumb is provided for determining whether the point source model should be used for the direct path signal. Finally, the ACE challenge dataset is used to validate the proposed DRR estimation method. The results show that the average full band estimation error is within 2 dB, with no clear trend of bias.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2016.2601222</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-9290 |
ispartof | IEEE/ACM transactions on audio, speech, and language processing, 2017-02, Vol.25 (2), p.226-237 |
issn | 2329-9290 2329-9304 |
language | eng |
recordid | cdi_ieee_primary_7546897 |
source | IEEE Electronic Library (IEL) |
subjects | Coherence Direct-to-reverberant energy ratio Energy consumption Estimating techniques Estimation Harmonic analysis higher order microphone Mathematical models Microphones Reverberation Sound pressure Speech Spherical harmonics spherical microphone array |
title | Direct-to-Reverberant Energy Ratio Estimation Using a First-Order Microphone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct-to-Reverberant%20Energy%20Ratio%20Estimation%20Using%20a%20First-Order%20Microphone&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Hanchi%20Chen&rft.date=2017-02-01&rft.volume=25&rft.issue=2&rft.spage=226&rft.epage=237&rft.pages=226-237&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASLP.2016.2601222&rft_dat=%3Cproquest_RIE%3E1855592925%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855592925&rft_id=info:pmid/&rft_ieee_id=7546897&rfr_iscdi=true |