Direct-to-Reverberant Energy Ratio Estimation Using a First-Order Microphone

The direct-to-reverberant ratio (DRR) is an important characterization of a reverberant environment. This paper presents a novel blind DRR estimation method based on the coherence function between the sound pressure and particle velocity at a point. First, a general expression of coherence function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2017-02, Vol.25 (2), p.226-237
Hauptverfasser: Hanchi Chen, Abhayapala, Thushara Dheemantha, Samarasinghe, Prasanga N., Wen Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The direct-to-reverberant ratio (DRR) is an important characterization of a reverberant environment. This paper presents a novel blind DRR estimation method based on the coherence function between the sound pressure and particle velocity at a point. First, a general expression of coherence function and DRR is derived in the spherical harmonic domain, without imposing assumptions on the reverberation. In this paper, DRR is expressed in terms of the coherence function as well as two parameters that are related to statistical characteristics of the reverberant environment. Then, a method to estimate the values of these two parameters using a microphone system capable of capturing first-order spherical harmonics is proposed, under three assumptions which are more realistic than the diffuse field model. Furthermore, a theoretical analysis on the use of plane wave model for direct path signal and its effect on DRR estimation is presented, and a rule of thumb is provided for determining whether the point source model should be used for the direct path signal. Finally, the ACE challenge dataset is used to validate the proposed DRR estimation method. The results show that the average full band estimation error is within 2 dB, with no clear trend of bias.
ISSN:2329-9290
2329-9304
DOI:10.1109/TASLP.2016.2601222