Rateless Lossy Compression via the Extremes

We begin by presenting a simple lossy compressor operating at near-zero rate: The encoder merely describes the indices of the few maximal source components, while the decoder's reconstruction is a natural estimate of the source components based on this information. This scheme turns out to be n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2016-10, Vol.62 (10), p.5484-5495
Hauptverfasser: No, Albert, Weissman, Tsachy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5495
container_issue 10
container_start_page 5484
container_title IEEE transactions on information theory
container_volume 62
creator No, Albert
Weissman, Tsachy
description We begin by presenting a simple lossy compressor operating at near-zero rate: The encoder merely describes the indices of the few maximal source components, while the decoder's reconstruction is a natural estimate of the source components based on this information. This scheme turns out to be near optimal for the memoryless Gaussian source in the sense of achieving the zero-rate slope of its distortion-rate function. Motivated by this finding, we then propose a scheme comprised of iterating the above lossy compressor on an appropriately transformed version of the difference between the source and its reconstruction from the previous iteration. The proposed scheme achieves the rate distortion function of the Gaussian memoryless source (under squared error distortion) when employed on any finite-variance ergodic source. It further possesses desirable properties, and we, respectively, refer to as infinitesimal successive refinability, ratelessness, and complete separability. Its storage and computation requirements are of order no more than (n 2 )/(log β n) per source symbol for β > 0 at both the encoder and the decoder. Though the details of its derivation, construction, and analysis differ considerably, we discuss similarities between the proposed scheme and the recently introduced Sparse Regression Codes of Venkataramanan et al.
doi_str_mv 10.1109/TIT.2016.2598148
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7542580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7542580</ieee_id><sourcerecordid>1993013429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-5b540d67f925e6b950fb41df127c12ca5667dd5f8a0f1c956741757e02b28eb03</originalsourceid><addsrcrecordid>eNpdkc1LHEEQxZuQENdN7gFBBrwIMpuunq7-uATCokZYEGRzbnpmanRkPjbds6L_vS27WUxORVG_elS9x9g34AsAbr-vb9YLwUEtBFoD0nxgM0DUuVUoP7IZ52ByK6U5YscxPqZWIojP7EjYQiOgnLGLOz9RRzFmqzHGl2w59puQ2nYcsqfWZ9MDZZfPU6Ce4hf2qfFdpK_7Ome_ry7Xy1_56vb6ZvlzlVdSyinHEiWvlW6sQFKlRd6UEuoGhK5AVB6V0nWNjfG8gcqi0hI0auKiFIZKXszZj53uZlv2VFc0TMF3bhPa3ocXN_rW_TsZ2gd3Pz451EZJUSSB871AGP9sKU6ub2NFXecHGrfRgbUFh0ImG-bs7D_0cdyGIb3nwIhkl1FGJYrvqCoklwI1h2OAu7ckXErCvSXh9kmkldP3TxwW_lqfgJMd0BLRYaxRCjS8eAV_PIuc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1824518686</pqid></control><display><type>article</type><title>Rateless Lossy Compression via the Extremes</title><source>IEEE Electronic Library (IEL)</source><creator>No, Albert ; Weissman, Tsachy</creator><creatorcontrib>No, Albert ; Weissman, Tsachy</creatorcontrib><description>We begin by presenting a simple lossy compressor operating at near-zero rate: The encoder merely describes the indices of the few maximal source components, while the decoder's reconstruction is a natural estimate of the source components based on this information. This scheme turns out to be near optimal for the memoryless Gaussian source in the sense of achieving the zero-rate slope of its distortion-rate function. Motivated by this finding, we then propose a scheme comprised of iterating the above lossy compressor on an appropriately transformed version of the difference between the source and its reconstruction from the previous iteration. The proposed scheme achieves the rate distortion function of the Gaussian memoryless source (under squared error distortion) when employed on any finite-variance ergodic source. It further possesses desirable properties, and we, respectively, refer to as infinitesimal successive refinability, ratelessness, and complete separability. Its storage and computation requirements are of order no more than (n 2 )/(log β n) per source symbol for β &gt; 0 at both the encoder and the decoder. Though the details of its derivation, construction, and analysis differ considerably, we discuss similarities between the proposed scheme and the recently introduced Sparse Regression Codes of Venkataramanan et al.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2598148</identifier><identifier>PMID: 29375154</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Complete separability ; Data compression ; Decoding ; Distortion ; extreme value theory ; infinitesimal successive refinability ; Information theory ; Mathematical functions ; Matrix decomposition ; Normal distribution ; order statistics ; rate distortion code ; Rate-distortion ; rateless code ; Regression analysis ; Source coding ; spherical distribution ; Symmetric matrices ; uniform random orthogonal matrix</subject><ispartof>IEEE transactions on information theory, 2016-10, Vol.62 (10), p.5484-5495</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-5b540d67f925e6b950fb41df127c12ca5667dd5f8a0f1c956741757e02b28eb03</citedby><cites>FETCH-LOGICAL-c444t-5b540d67f925e6b950fb41df127c12ca5667dd5f8a0f1c956741757e02b28eb03</cites><orcidid>0000-0002-6346-4182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7542580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7542580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29375154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>No, Albert</creatorcontrib><creatorcontrib>Weissman, Tsachy</creatorcontrib><title>Rateless Lossy Compression via the Extremes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><addtitle>IEEE Trans Inf Theory</addtitle><description>We begin by presenting a simple lossy compressor operating at near-zero rate: The encoder merely describes the indices of the few maximal source components, while the decoder's reconstruction is a natural estimate of the source components based on this information. This scheme turns out to be near optimal for the memoryless Gaussian source in the sense of achieving the zero-rate slope of its distortion-rate function. Motivated by this finding, we then propose a scheme comprised of iterating the above lossy compressor on an appropriately transformed version of the difference between the source and its reconstruction from the previous iteration. The proposed scheme achieves the rate distortion function of the Gaussian memoryless source (under squared error distortion) when employed on any finite-variance ergodic source. It further possesses desirable properties, and we, respectively, refer to as infinitesimal successive refinability, ratelessness, and complete separability. Its storage and computation requirements are of order no more than (n 2 )/(log β n) per source symbol for β &gt; 0 at both the encoder and the decoder. Though the details of its derivation, construction, and analysis differ considerably, we discuss similarities between the proposed scheme and the recently introduced Sparse Regression Codes of Venkataramanan et al.</description><subject>Complete separability</subject><subject>Data compression</subject><subject>Decoding</subject><subject>Distortion</subject><subject>extreme value theory</subject><subject>infinitesimal successive refinability</subject><subject>Information theory</subject><subject>Mathematical functions</subject><subject>Matrix decomposition</subject><subject>Normal distribution</subject><subject>order statistics</subject><subject>rate distortion code</subject><subject>Rate-distortion</subject><subject>rateless code</subject><subject>Regression analysis</subject><subject>Source coding</subject><subject>spherical distribution</subject><subject>Symmetric matrices</subject><subject>uniform random orthogonal matrix</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1LHEEQxZuQENdN7gFBBrwIMpuunq7-uATCokZYEGRzbnpmanRkPjbds6L_vS27WUxORVG_elS9x9g34AsAbr-vb9YLwUEtBFoD0nxgM0DUuVUoP7IZ52ByK6U5YscxPqZWIojP7EjYQiOgnLGLOz9RRzFmqzHGl2w59puQ2nYcsqfWZ9MDZZfPU6Ce4hf2qfFdpK_7Ome_ry7Xy1_56vb6ZvlzlVdSyinHEiWvlW6sQFKlRd6UEuoGhK5AVB6V0nWNjfG8gcqi0hI0auKiFIZKXszZj53uZlv2VFc0TMF3bhPa3ocXN_rW_TsZ2gd3Pz451EZJUSSB871AGP9sKU6ub2NFXecHGrfRgbUFh0ImG-bs7D_0cdyGIb3nwIhkl1FGJYrvqCoklwI1h2OAu7ckXErCvSXh9kmkldP3TxwW_lqfgJMd0BLRYaxRCjS8eAV_PIuc</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>No, Albert</creator><creator>Weissman, Tsachy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6346-4182</orcidid></search><sort><creationdate>20161001</creationdate><title>Rateless Lossy Compression via the Extremes</title><author>No, Albert ; Weissman, Tsachy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-5b540d67f925e6b950fb41df127c12ca5667dd5f8a0f1c956741757e02b28eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Complete separability</topic><topic>Data compression</topic><topic>Decoding</topic><topic>Distortion</topic><topic>extreme value theory</topic><topic>infinitesimal successive refinability</topic><topic>Information theory</topic><topic>Mathematical functions</topic><topic>Matrix decomposition</topic><topic>Normal distribution</topic><topic>order statistics</topic><topic>rate distortion code</topic><topic>Rate-distortion</topic><topic>rateless code</topic><topic>Regression analysis</topic><topic>Source coding</topic><topic>spherical distribution</topic><topic>Symmetric matrices</topic><topic>uniform random orthogonal matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>No, Albert</creatorcontrib><creatorcontrib>Weissman, Tsachy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>No, Albert</au><au>Weissman, Tsachy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rateless Lossy Compression via the Extremes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><addtitle>IEEE Trans Inf Theory</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>62</volume><issue>10</issue><spage>5484</spage><epage>5495</epage><pages>5484-5495</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We begin by presenting a simple lossy compressor operating at near-zero rate: The encoder merely describes the indices of the few maximal source components, while the decoder's reconstruction is a natural estimate of the source components based on this information. This scheme turns out to be near optimal for the memoryless Gaussian source in the sense of achieving the zero-rate slope of its distortion-rate function. Motivated by this finding, we then propose a scheme comprised of iterating the above lossy compressor on an appropriately transformed version of the difference between the source and its reconstruction from the previous iteration. The proposed scheme achieves the rate distortion function of the Gaussian memoryless source (under squared error distortion) when employed on any finite-variance ergodic source. It further possesses desirable properties, and we, respectively, refer to as infinitesimal successive refinability, ratelessness, and complete separability. Its storage and computation requirements are of order no more than (n 2 )/(log β n) per source symbol for β &gt; 0 at both the encoder and the decoder. Though the details of its derivation, construction, and analysis differ considerably, we discuss similarities between the proposed scheme and the recently introduced Sparse Regression Codes of Venkataramanan et al.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29375154</pmid><doi>10.1109/TIT.2016.2598148</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6346-4182</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2016-10, Vol.62 (10), p.5484-5495
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_7542580
source IEEE Electronic Library (IEL)
subjects Complete separability
Data compression
Decoding
Distortion
extreme value theory
infinitesimal successive refinability
Information theory
Mathematical functions
Matrix decomposition
Normal distribution
order statistics
rate distortion code
Rate-distortion
rateless code
Regression analysis
Source coding
spherical distribution
Symmetric matrices
uniform random orthogonal matrix
title Rateless Lossy Compression via the Extremes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rateless%20Lossy%20Compression%20via%20the%20Extremes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=No,%20Albert&rft.date=2016-10-01&rft.volume=62&rft.issue=10&rft.spage=5484&rft.epage=5495&rft.pages=5484-5495&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2598148&rft_dat=%3Cproquest_RIE%3E1993013429%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1824518686&rft_id=info:pmid/29375154&rft_ieee_id=7542580&rfr_iscdi=true