Rateless Lossy Compression via the Extremes

We begin by presenting a simple lossy compressor operating at near-zero rate: The encoder merely describes the indices of the few maximal source components, while the decoder's reconstruction is a natural estimate of the source components based on this information. This scheme turns out to be n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2016-10, Vol.62 (10), p.5484-5495
Hauptverfasser: No, Albert, Weissman, Tsachy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We begin by presenting a simple lossy compressor operating at near-zero rate: The encoder merely describes the indices of the few maximal source components, while the decoder's reconstruction is a natural estimate of the source components based on this information. This scheme turns out to be near optimal for the memoryless Gaussian source in the sense of achieving the zero-rate slope of its distortion-rate function. Motivated by this finding, we then propose a scheme comprised of iterating the above lossy compressor on an appropriately transformed version of the difference between the source and its reconstruction from the previous iteration. The proposed scheme achieves the rate distortion function of the Gaussian memoryless source (under squared error distortion) when employed on any finite-variance ergodic source. It further possesses desirable properties, and we, respectively, refer to as infinitesimal successive refinability, ratelessness, and complete separability. Its storage and computation requirements are of order no more than (n 2 )/(log β n) per source symbol for β > 0 at both the encoder and the decoder. Though the details of its derivation, construction, and analysis differ considerably, we discuss similarities between the proposed scheme and the recently introduced Sparse Regression Codes of Venkataramanan et al.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2016.2598148