Clock-Gating of Streaming Applications for Energy Efficient Implementations on FPGAs

This paper investigates the reduction of dynamic power for streaming applications yielded by asynchronous dataflow designs by using clock gating techniques. Streaming applications constitute a very broad class of computing algorithms in areas such as signal processing, digital media coding, cryptogr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2017-04, Vol.36 (4), p.699-703
Hauptverfasser: Bezati, Endri, Casale-Brunet, Simone, Mattavelli, Marco, Janneck, Jorn W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the reduction of dynamic power for streaming applications yielded by asynchronous dataflow designs by using clock gating techniques. Streaming applications constitute a very broad class of computing algorithms in areas such as signal processing, digital media coding, cryptography, video analytics, network routing, packet processing, etc. This paper introduces a set of techniques that, considering the dynamic streaming behavior of algorithms, can achieve power savings by selectively switching off parts of the circuits when they are temporarily inactive. The techniques being independent from the semantic of the application can be applied to any application and can be integrated into the synthesis stage of a high-level dataflow design flow. Experimental results of at-size applications synthesized on field-programmable gate arrays platforms demonstrate power reductions achievable with no loss in data throughput.
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2016.2597215