Equiangular Tight Frames From Hyperovals

An equiangular tight frame (ETF) is a set of equal norm vectors in a Euclidean space whose coherence is as small as possible, equaling the Welch bound. Also known as Welch-bound-equality sequences, such frames arise in various applications, such as waveform design, quantum information theory, compre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2016-09, Vol.62 (9), p.5225-5236
Hauptverfasser: Fickus, Matthew, Mixon, Dustin G., Jasper, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5236
container_issue 9
container_start_page 5225
container_title IEEE transactions on information theory
container_volume 62
creator Fickus, Matthew
Mixon, Dustin G.
Jasper, John
description An equiangular tight frame (ETF) is a set of equal norm vectors in a Euclidean space whose coherence is as small as possible, equaling the Welch bound. Also known as Welch-bound-equality sequences, such frames arise in various applications, such as waveform design, quantum information theory, compressed sensing, and algebraic coding theory. ETFs seem to be rare, and only a few methods of constructing them are known. In this paper, we present a new infinite family of complex ETFs that arises from hyperovals in finite projective planes. In particular, we give the first ever construction of a complex ETF of 76 vectors in a space of dimension 19. Recently, a computer-assisted approach was used to show that real ETFs of this size do not exist, resolving a longstanding open problem in this field. Our construction is a modification of a previously known technique for constructing ETFs from balanced incomplete block designs.
doi_str_mv 10.1109/TIT.2016.2587865
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7508487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7508487</ieee_id><sourcerecordid>4174060571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-273516817e6c217c8fa21d09b1a27f67e0d9725f6314fc0231b333aadee512543</originalsourceid><addsrcrecordid>eNpdkE1rwkAQhpfSQlPbe6EXoRcvsTv7nWMRrYLQS3pe1mRiI4nRXVPw33cl0kNPLwPPO8w8hDwDnQLQ7C1f5VNGQU2ZNNooeUMSkFKnmZLiliSUgkkzIcw9eQhhF0chgSVkMj_2tdtv-8b5cV5vv0_jhXcthhhdO16eD-i7H9eER3JXxcCna47I12Kez5bp-vNjNXtfpwVn4pQyzSUoAxpVwUAXpnIMSpptwDFdKY20zDSTleIgqoIyDhvOuXMlYrxHCj4ik2HvwXfHHsPJtnUosGncHrs-WDBcKsqpMhF9_Yfuut7v43WRAi1lfFJFig5U4bsQPFb24OvW-bMFai_qbFRnL-rsVV2svAyVGhH_cC2pEUbzXyFeZwY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1817550146</pqid></control><display><type>article</type><title>Equiangular Tight Frames From Hyperovals</title><source>IEEE Electronic Library (IEL)</source><creator>Fickus, Matthew ; Mixon, Dustin G. ; Jasper, John</creator><creatorcontrib>Fickus, Matthew ; Mixon, Dustin G. ; Jasper, John</creatorcontrib><description>An equiangular tight frame (ETF) is a set of equal norm vectors in a Euclidean space whose coherence is as small as possible, equaling the Welch bound. Also known as Welch-bound-equality sequences, such frames arise in various applications, such as waveform design, quantum information theory, compressed sensing, and algebraic coding theory. ETFs seem to be rare, and only a few methods of constructing them are known. In this paper, we present a new infinite family of complex ETFs that arises from hyperovals in finite projective planes. In particular, we give the first ever construction of a complex ETF of 76 vectors in a space of dimension 19. Recently, a computer-assisted approach was used to show that real ETFs of this size do not exist, resolving a longstanding open problem in this field. Our construction is a modification of a previously known technique for constructing ETFs from balanced incomplete block designs.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2587865</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebra ; Coding theory ; Coherence ; Compressed sensing ; Construction ; Equiangular tight frame ; Error correction ; Error correction codes ; Euclidean geometry ; Euclidean space ; Frames ; Hilbert space ; Information theory ; Mathematical analysis ; Norms ; Quantum mechanics ; Quantum theory ; Vectors (mathematics) ; Waveforms ; Welch bound</subject><ispartof>IEEE transactions on information theory, 2016-09, Vol.62 (9), p.5225-5236</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-273516817e6c217c8fa21d09b1a27f67e0d9725f6314fc0231b333aadee512543</citedby><cites>FETCH-LOGICAL-c324t-273516817e6c217c8fa21d09b1a27f67e0d9725f6314fc0231b333aadee512543</cites><orcidid>0000-0002-4295-1475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7508487$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7508487$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fickus, Matthew</creatorcontrib><creatorcontrib>Mixon, Dustin G.</creatorcontrib><creatorcontrib>Jasper, John</creatorcontrib><title>Equiangular Tight Frames From Hyperovals</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>An equiangular tight frame (ETF) is a set of equal norm vectors in a Euclidean space whose coherence is as small as possible, equaling the Welch bound. Also known as Welch-bound-equality sequences, such frames arise in various applications, such as waveform design, quantum information theory, compressed sensing, and algebraic coding theory. ETFs seem to be rare, and only a few methods of constructing them are known. In this paper, we present a new infinite family of complex ETFs that arises from hyperovals in finite projective planes. In particular, we give the first ever construction of a complex ETF of 76 vectors in a space of dimension 19. Recently, a computer-assisted approach was used to show that real ETFs of this size do not exist, resolving a longstanding open problem in this field. Our construction is a modification of a previously known technique for constructing ETFs from balanced incomplete block designs.</description><subject>Algebra</subject><subject>Coding theory</subject><subject>Coherence</subject><subject>Compressed sensing</subject><subject>Construction</subject><subject>Equiangular tight frame</subject><subject>Error correction</subject><subject>Error correction codes</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Frames</subject><subject>Hilbert space</subject><subject>Information theory</subject><subject>Mathematical analysis</subject><subject>Norms</subject><subject>Quantum mechanics</subject><subject>Quantum theory</subject><subject>Vectors (mathematics)</subject><subject>Waveforms</subject><subject>Welch bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1rwkAQhpfSQlPbe6EXoRcvsTv7nWMRrYLQS3pe1mRiI4nRXVPw33cl0kNPLwPPO8w8hDwDnQLQ7C1f5VNGQU2ZNNooeUMSkFKnmZLiliSUgkkzIcw9eQhhF0chgSVkMj_2tdtv-8b5cV5vv0_jhXcthhhdO16eD-i7H9eER3JXxcCna47I12Kez5bp-vNjNXtfpwVn4pQyzSUoAxpVwUAXpnIMSpptwDFdKY20zDSTleIgqoIyDhvOuXMlYrxHCj4ik2HvwXfHHsPJtnUosGncHrs-WDBcKsqpMhF9_Yfuut7v43WRAi1lfFJFig5U4bsQPFb24OvW-bMFai_qbFRnL-rsVV2svAyVGhH_cC2pEUbzXyFeZwY</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Fickus, Matthew</creator><creator>Mixon, Dustin G.</creator><creator>Jasper, John</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-4295-1475</orcidid></search><sort><creationdate>201609</creationdate><title>Equiangular Tight Frames From Hyperovals</title><author>Fickus, Matthew ; Mixon, Dustin G. ; Jasper, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-273516817e6c217c8fa21d09b1a27f67e0d9725f6314fc0231b333aadee512543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Coding theory</topic><topic>Coherence</topic><topic>Compressed sensing</topic><topic>Construction</topic><topic>Equiangular tight frame</topic><topic>Error correction</topic><topic>Error correction codes</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Frames</topic><topic>Hilbert space</topic><topic>Information theory</topic><topic>Mathematical analysis</topic><topic>Norms</topic><topic>Quantum mechanics</topic><topic>Quantum theory</topic><topic>Vectors (mathematics)</topic><topic>Waveforms</topic><topic>Welch bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fickus, Matthew</creatorcontrib><creatorcontrib>Mixon, Dustin G.</creatorcontrib><creatorcontrib>Jasper, John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fickus, Matthew</au><au>Mixon, Dustin G.</au><au>Jasper, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equiangular Tight Frames From Hyperovals</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2016-09</date><risdate>2016</risdate><volume>62</volume><issue>9</issue><spage>5225</spage><epage>5236</epage><pages>5225-5236</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>An equiangular tight frame (ETF) is a set of equal norm vectors in a Euclidean space whose coherence is as small as possible, equaling the Welch bound. Also known as Welch-bound-equality sequences, such frames arise in various applications, such as waveform design, quantum information theory, compressed sensing, and algebraic coding theory. ETFs seem to be rare, and only a few methods of constructing them are known. In this paper, we present a new infinite family of complex ETFs that arises from hyperovals in finite projective planes. In particular, we give the first ever construction of a complex ETF of 76 vectors in a space of dimension 19. Recently, a computer-assisted approach was used to show that real ETFs of this size do not exist, resolving a longstanding open problem in this field. Our construction is a modification of a previously known technique for constructing ETFs from balanced incomplete block designs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2016.2587865</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4295-1475</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2016-09, Vol.62 (9), p.5225-5236
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_7508487
source IEEE Electronic Library (IEL)
subjects Algebra
Coding theory
Coherence
Compressed sensing
Construction
Equiangular tight frame
Error correction
Error correction codes
Euclidean geometry
Euclidean space
Frames
Hilbert space
Information theory
Mathematical analysis
Norms
Quantum mechanics
Quantum theory
Vectors (mathematics)
Waveforms
Welch bound
title Equiangular Tight Frames From Hyperovals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equiangular%20Tight%20Frames%20From%20Hyperovals&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Fickus,%20Matthew&rft.date=2016-09&rft.volume=62&rft.issue=9&rft.spage=5225&rft.epage=5236&rft.pages=5225-5236&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2587865&rft_dat=%3Cproquest_RIE%3E4174060571%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1817550146&rft_id=info:pmid/&rft_ieee_id=7508487&rfr_iscdi=true