Equiangular Tight Frames From Hyperovals
An equiangular tight frame (ETF) is a set of equal norm vectors in a Euclidean space whose coherence is as small as possible, equaling the Welch bound. Also known as Welch-bound-equality sequences, such frames arise in various applications, such as waveform design, quantum information theory, compre...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2016-09, Vol.62 (9), p.5225-5236 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An equiangular tight frame (ETF) is a set of equal norm vectors in a Euclidean space whose coherence is as small as possible, equaling the Welch bound. Also known as Welch-bound-equality sequences, such frames arise in various applications, such as waveform design, quantum information theory, compressed sensing, and algebraic coding theory. ETFs seem to be rare, and only a few methods of constructing them are known. In this paper, we present a new infinite family of complex ETFs that arises from hyperovals in finite projective planes. In particular, we give the first ever construction of a complex ETF of 76 vectors in a space of dimension 19. Recently, a computer-assisted approach was used to show that real ETFs of this size do not exist, resolving a longstanding open problem in this field. Our construction is a modification of a previously known technique for constructing ETFs from balanced incomplete block designs. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2016.2587865 |