Asymptotically optimal probabilistic embedding algorithms for supporting tree structured computations in hypercubes

We show two asymptotically optimal probabilistic tree embedding algorithms in hypercubes with constant dilation. These algorithms are slight extension of the random walk algorithm. The first algorithm allows a tree node to have a stay option during each step of a random walk. The second algorithm pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Keqin Li, Dorband, J.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show two asymptotically optimal probabilistic tree embedding algorithms in hypercubes with constant dilation. These algorithms are slight extension of the random walk algorithm. The first algorithm allows a tree node to have a stay option during each step of a random walk. The second algorithm permits varying length of random walks. Numerical data are given to demonstrate performance improvement.
DOI:10.1109/FMPC.1999.750603