Deep and Structured Robust Information Theoretic Learning for Image Analysis

This paper presents a robust information theoretic (RIT) model to reduce the uncertainties, i.e., missing and noisy labels, in general discriminative data representation tasks. The fundamental pursuit of our model is to simultaneously learn a transformation function and a discriminative classifier t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2016-09, Vol.25 (9), p.4209-4221
Hauptverfasser: Deng, Yue, Bao, Feng, Deng, Xuesong, Wang, Ruiping, Kong, Youyong, Dai, Qionghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a robust information theoretic (RIT) model to reduce the uncertainties, i.e., missing and noisy labels, in general discriminative data representation tasks. The fundamental pursuit of our model is to simultaneously learn a transformation function and a discriminative classifier that maximize the mutual information of data and their labels in the latent space. In this general paradigm, we, respectively, discuss three types of the RIT implementations with linear subspace embedding, deep transformation, and structured sparse learning. In practice, the RIT and deep RIT are exploited to solve the image categorization task whose performances will be verified on various benchmark data sets. The structured sparse RIT is further applied to a medical image analysis task for brain magnetic resonance image segmentation that allows group-level feature selections on the brain tissues.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2016.2588330