Fuzzy logic for constant force control of end milling

The machining condition usually has significant variation resulting from the change of cutting depth and the intrinsic property of the workpiece. In order to maintain the performance of a classical proportional integral derivative control system, the tool life and machining quality, conservative fee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 1999-02, Vol.46 (1), p.169-176
Hauptverfasser: HUANG, S.-J, SHY, C.-Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The machining condition usually has significant variation resulting from the change of cutting depth and the intrinsic property of the workpiece. In order to maintain the performance of a classical proportional integral derivative control system, the tool life and machining quality, conservative feedrate, and cutting depth change are prespecified as the limitations of computer numerically controlled operators. Therefore, constant cutting force control is proposed as a useful approach for increasing the metal removal rate and the tool life. However, the model-based controller cannot handle the nonlinearity of a force control system due to cutting condition variations. Here, a fuzzy controller with learning ability was employed to improve both the system performance and the adaptability. This control approach vias implemented on a retrofit old-fashioned milling machine for the end milling process. The experimental results show that this control strategy has smooth feedrate and good cutting force dynamic responses.
ISSN:0278-0046
1557-9948
DOI:10.1109/41.744408