Cure-state monitoring and water-to-cement ratio determination of fresh Portland cement-based materials using near-field microwave techniques

Quick and nondestructive determination of cure-state and water-to-cement (w/c) ratio in fresh Portland cement-based materials is an important issue in the construction industry since the compressive strength of these materials is significantly influenced by w/c ratio. In this paper, the results of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 1998-06, Vol.47 (3), p.628-637
Hauptverfasser: Bois, K.J., Benally, A.D., Nowak, P.S., Zoughi, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quick and nondestructive determination of cure-state and water-to-cement (w/c) ratio in fresh Portland cement-based materials is an important issue in the construction industry since the compressive strength of these materials is significantly influenced by w/c ratio. In this paper, the results of a study demonstrating the potential for early determination of cure-state and w/c ratio of Portland cement-based materials, using a near-field microwave inspection technique, are presented. This technique utilizes the reflection properties of an open-ended rectangular waveguide probe radiating into Portland cement-based materials at 5 GHz (G-band) and 10 GHz (X-band). The results demonstrate the ability of near-field microwave sensing techniques to determine the state of hydration of cement paste and concrete with 0.50 and 0.60 w/c ratios and varying aggregate contents. An empirical formula relating the magnitude of reflection coefficient to the curing time is presented. Using this empirical relationship, the w/c ratio of cement paste and concrete can be unambiguously determined when daily monitoring of the reflection properties of the specimens is performed. The potential for utilizing this technique for on-site monitoring of cure-state and w/c ratio (and compressive strength) determination is also discussed.
ISSN:0018-9456
1557-9662
DOI:10.1109/19.744313