Sparse Distributed Estimation via Heterogeneous Diffusion Adaptive Networks

Recently, diffusion networks have been proposed to identify sparse linear systems which employ sparsity-aware algorithms like the zero-attracting LMS (ZA-LMS) at each node to exploit sparsity. In this brief, we show that the same optimum performance as reached by the aforementioned networks can also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2016-11, Vol.63 (11), p.1079-1083
Hauptverfasser: Das, Bijit K., Chakraborty, Mrityunjoy, Arenas-Garcia, Jeronimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, diffusion networks have been proposed to identify sparse linear systems which employ sparsity-aware algorithms like the zero-attracting LMS (ZA-LMS) at each node to exploit sparsity. In this brief, we show that the same optimum performance as reached by the aforementioned networks can also be achieved by a "heterogeneous" network with only a fraction of the nodes deploying ZA-LMS-based adaptation, provided that the ZA-LMS-based nodes are distributed over the network maintaining some "uniformity." Reduction in the number of sparsity-aware nodes reduces the overall computational burden of the network. We show analytically and also by simulation studies that the only adjustment needed to achieve this reduction is a proportional increase in the value of the optimum zero attracting coefficient.
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2016.2548182