Bi-Level Semantic Representation Analysis for Multimedia Event Detection

Multimedia event detection has been one of the major endeavors in video event analysis. A variety of approaches have been proposed recently to tackle this problem. Among others, using semantic representation has been accredited for its promising performance and desirable ability for human-understand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2017-05, Vol.47 (5), p.1180-1197
Hauptverfasser: Xiaojun Chang, Zhigang Ma, Yi Yang, Zhiqiang Zeng, Hauptmann, Alexander G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multimedia event detection has been one of the major endeavors in video event analysis. A variety of approaches have been proposed recently to tackle this problem. Among others, using semantic representation has been accredited for its promising performance and desirable ability for human-understandable reasoning. To generate semantic representation, we usually utilize several external image/video archives and apply the concept detectors trained on them to the event videos. Due to the intrinsic difference of these archives, the resulted representation is presumable to have different predicting capabilities for a certain event. Notwithstanding, not much work is available for assessing the efficacy of semantic representation from the source-level. On the other hand, it is plausible to perceive that some concepts are noisy for detecting a specific event. Motivated by these two shortcomings, we propose a bi-level semantic representation analyzing method. Regarding source-level, our method learns weights of semantic representation attained from different multimedia archives. Meanwhile, it restrains the negative influence of noisy or irrelevant concepts in the overall concept-level. In addition, we particularly focus on efficient multimedia event detection with few positive examples, which is highly appreciated in the real-world scenario. We perform extensive experiments on the challenging TRECVID MED 2013 and 2014 datasets with encouraging results that validate the efficacy of our proposed approach.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2016.2539546