Achieving Exact Cluster Recovery Threshold via Semidefinite Programming
The binary symmetric stochastic block model deals with a random graph of n vertices partitioned into two equal-sized clusters, such that each pair of vertices is independently connected with probability p within clusters and q across clusters. In the asymptotic regime of p = a log n/n and q = b log...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2016-05, Vol.62 (5), p.2788-2797 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The binary symmetric stochastic block model deals with a random graph of n vertices partitioned into two equal-sized clusters, such that each pair of vertices is independently connected with probability p within clusters and q across clusters. In the asymptotic regime of p = a log n/n and q = b log n/n for fixed a, b, and n → ∞, we show that the semidefinite programming relaxation of the maximum likelihood estimator achieves the optimal threshold for exactly recovering the partition from the graph with probability tending to one, resolving a conjecture of Abbe et al. Furthermore, we show that the semidefinite programming relaxation also achieves the optimal recovery threshold in the planted dense subgraph model containing a single cluster of size proportional to n. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2016.2546280 |