Solar Power Prediction Based on Satellite Images and Support Vector Machine
Penetration of solar energy into main grid has gradually increased in recent years due to a growing number of large-scale photovoltaic (PV) farms. The power output of these PV farms may fluctuate due to a wide variability of meteorological conditions, and, thus, we need to compensate for this effect...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on sustainable energy 2016-07, Vol.7 (3), p.1255-1263 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Penetration of solar energy into main grid has gradually increased in recent years due to a growing number of large-scale photovoltaic (PV) farms. The power output of these PV farms may fluctuate due to a wide variability of meteorological conditions, and, thus, we need to compensate for this effect in advance. In this paper, we propose a solar power prediction model based on various satellite images and a support vector machine (SVM) learning scheme. The motion vectors of clouds are forecasted by utilizing satellite images of atmospheric motion vectors (AMVs). We analyze 4 years' historical satellite images and utilize them to configure a large number of input and output data sets for the SVM learning. We compare the performance of the proposed SVM-based model, the conventional time-series model, and an artificial neural network (ANN) model in terms of prediction accuracy. |
---|---|
ISSN: | 1949-3029 1949-3037 |
DOI: | 10.1109/TSTE.2016.2535466 |