A New Cascaded Switched-Capacitor Multilevel Inverter Based on Improved Series-Parallel Conversion With Less Number of Components
The aim of this paper is to present a new structure for switched-capacitor multilevel inverters (SCMLIs) which can generate a great number of voltage levels with optimum number of components for both symmetric and asymmetric values of dc-voltage sources. The proposed topology consists of a new switc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2016-06, Vol.63 (6), p.3582-3594 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this paper is to present a new structure for switched-capacitor multilevel inverters (SCMLIs) which can generate a great number of voltage levels with optimum number of components for both symmetric and asymmetric values of dc-voltage sources. The proposed topology consists of a new switched-capacitor dc/dc converter (SCC) that has boost ability and can charge capacitors as self-balancing by using the proposed binary asymmetrical algorithm and series-parallel conversion of power supply. The proposed SCC unit is used in new configuration as a submultilevel inverter (SMLI) and then, these proposed SMLIs are cascaded together and create a new cascaded multilevel inverter (MLI) topology that is able to increase the number of output voltage levels remarkably without using any full H-bridge cell and also can pass the reverse current for inductive loads. In this case, two half-bridge modules besides two additional switches are employed in each of SMLI units instead of using a full H-bridge cell that contribute to reduce the number of involved components in the current path, value of blocked voltage, the variety of isolated dc-voltage sources, and as a result, the overall cost by less number of switches in comparison with other presented topologies. The validity of the proposed SCMLI has been carried out by several simulation and experimental results. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2016.2529563 |