UV Reduced Graphene Oxide PEDOT:PSS Nanocomposite for Perovskite Solar Cells

In this paper, we have investigated the possibility to realize a nanocomposite buffer layer for perovskite solar cells, based on polyelectrolyte poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) PEDOT:PSS and graphene oxide (GO). To this aim, GO, prepared by a modified Hummers method, was mix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2016-09, Vol.15 (5), p.725-730
Hauptverfasser: Giuri, Antonella, Masi, Sofia, Colella, Silvia, Listorti, Andrea, Rizzo, Aurora, Gigli, Giuseppe, Liscio, Andrea, Treossi, Emanuele, Palermo, Vincenzo, Rella, Simona, Malitesta, Cosimino, Esposito Corcione, Carola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we have investigated the possibility to realize a nanocomposite buffer layer for perovskite solar cells, based on polyelectrolyte poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) PEDOT:PSS and graphene oxide (GO). To this aim, GO, prepared by a modified Hummers method, was mixed with PEDOT:PSS by solvent swelling method and reduced in situ into the polymer matrix through a green and simple method, by using UV radiation. Thin nanocomposite layers were spin coated on different substrates and characterized by several techniques. GO reduction was first analyzed by XPS analyses, monitoring the decrease of the intensity of the peak of the oxygen groups linked to carbon. The grade of the dispersion of GO into PEDOT:PSS was also analyzed by scanning electron microscopy. Sheet resistance measurements of the films with and without GO before and after UV treatment was performed. The thermal stability of the nanocomposites was then evaluated by thermogravimetric analyses. The nanocomposite layer was finally employed in a perovskite solar cell to evaluate the effect of GO reduction on power conversion efficiency. The interface interaction between the nanocomposite and the perovskite precursors was analyzed by contact angle measurements.
ISSN:1536-125X
1941-0085
DOI:10.1109/TNANO.2016.2524689