Maximum Power Point Tracking Control of IPMSG Incorporating Loss Minimization and Speed Sensorless Schemes for Wind Energy System

In the variable-speed generation system, the wind turbine (WT) can be operated at maximum power operating points by adjusting the shaft speed optimally. This paper presents a novel maximum power point tracking (MPPT)-based control of interior permanent-magnet (IPM) synchronous generator incorporatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2016-03, Vol.52 (2), p.1902-1912
Hauptverfasser: Nasir Uddin, M., Patel, Nirav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the variable-speed generation system, the wind turbine (WT) can be operated at maximum power operating points by adjusting the shaft speed optimally. This paper presents a novel maximum power point tracking (MPPT)-based control of interior permanent-magnet (IPM) synchronous generator incorporating loss minimization algorithm (LMA). In the proposed method, without requiring the knowledge of wind speed, air density, or turbine parameters, MPPT algorithm generates optimum speed command for speed control loop of vector-controlled machine side converter. The MPPT algorithm uses the estimated active power output of the generator as its input and generates command speed so that maximum power is transferred to the dc link. The proposed control system also incorporates a LMA to minimize the losses in the generator and hence to improve the efficiency of the wind energy conversion system (WECS). A speed sensorless scheme is also incorporated to increase the reliability of the system. The performance of the proposed adaptive MPPT control of wind generator incorporating loss minimization and speed sensorless schemes is tested in both simulation and experiment at variable wind speed conditions.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2015.2510507