Optimization of SiGe HBT RF Switches for Single-Event Transient Mitigation

Single-event transient (SET)-hardened SiGe HBT RF single-pole single-throw (SPST) switches were designed and fabricated for the first time. TCAD-based heavy-ion simulations and two-photon absorption (TPA) laser-induced beam experiments were used to optimize the switch core configuration for SET miti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2015-12, Vol.62 (6), p.3057-3063
Hauptverfasser: Ickhyun Song, Seungwoo Jung, Lourenco, Nelson E., Raghunathan, Uppili S., Fleetwood, Zachary E., Moon-Kyu Cho, Roche, Nicholas J.-H, Khachatrian, Ani, Warner, Jeffrey H., Buchner, Stephen P., McMorrow, Dale, Paki, Pauline, Cressler, John D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-event transient (SET)-hardened SiGe HBT RF single-pole single-throw (SPST) switches were designed and fabricated for the first time. TCAD-based heavy-ion simulations and two-photon absorption (TPA) laser-induced beam experiments were used to optimize the switch core configuration for SET mitigation. Among different configurations, the reverse-connected series and shunt device core, where both emitter terminals are connected to the output, exhibits the smallest transient peaks and shortest durations at the output terminal of the switch. Based on this finding, the design considerations for maximizing the RF performance of SiGe HBT SPST RF switches are discussed. In addition, a comparison of the SET response and RF performance of CMOS (nFET) SPST and SiGe HBT SPST switches provides additional information on the trade-offs in the SET mitigation strategy and potential RF capabilities.
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2015.2494859