Driver Distraction Detection Using Semi-Supervised Machine Learning
Real-time driver distraction detection is the core to many distraction countermeasures and fundamental for constructing a driver-centered driver assistance system. While data-driven methods demonstrate promising detection performance, a particular challenge is how to reduce the considerable cost for...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2016-04, Vol.17 (4), p.1108-1120 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Real-time driver distraction detection is the core to many distraction countermeasures and fundamental for constructing a driver-centered driver assistance system. While data-driven methods demonstrate promising detection performance, a particular challenge is how to reduce the considerable cost for collecting labeled data. This paper explored semi-supervised methods for driver distraction detection in real driving conditions to alleviate the cost of labeling training data. Laplacian support vector machine and semi-supervised extreme learning machine were evaluated using eye and head movements to classify two driver states: attentive and cognitively distracted. With the additional unlabeled data, the semi-supervised learning methods improved the detection performance (G-mean) by 0.0245, on average, over all subjects, as compared with the traditional supervised methods. As unlabeled training data can be collected from drivers' naturalistic driving records with little extra resource, semi-supervised methods, which utilize both labeled and unlabeled data, can enhance the efficiency of model development in terms of time and cost. |
---|---|
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2015.2496157 |