Social Grouping for Multi-Target Tracking and Head Pose Estimation in Video

Many computer vision tasks are more difficult when tackled without contextual information. For example, in multi-camera tracking, pedestrians may look very different in different cameras with varying pose and lighting conditions. Similarly, head direction estimation in high-angle surveillance video...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2016-10, Vol.38 (10), p.2082-2095
Hauptverfasser: Zhen Qin, Shelton, Christian R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many computer vision tasks are more difficult when tackled without contextual information. For example, in multi-camera tracking, pedestrians may look very different in different cameras with varying pose and lighting conditions. Similarly, head direction estimation in high-angle surveillance video in which human head images are low resolution is challenging. Even humans can have trouble without contextual information. In this work, we couple novel contextual information, social grouping, with two important computer vision tasks: multi-target tracking and head pose/direction estimation in surveillance video. These three components are modeled in a probabilistic formulation and we provide effective solvers.We show that social grouping effectively helps to mitigate visual ambiguities in multi-camera tracking and head pose estimation. We further notice that in single-camera multi-target tracking, social grouping provides a natural high-order association cue that avoids existing complex algorithms for high-order track association. In experiments, we demonstrate improvements with our model over models without social grouping context and several state-of-art approaches on a number of publicly available datasets on tracking, head pose estimation, and group discovery.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2015.2505292