Resilient Distributed Energy Management Subject to Unexpected Misbehaving Generation Units
Distributed energy management algorithms are being developed for the smart grid to efficiently and economically allocate electric power among connected distributed generation units and loads. The use of such algorithms provides flexibility, robustness, and scalability, while it also increases the vu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2017-02, Vol.13 (1), p.208-216 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Distributed energy management algorithms are being developed for the smart grid to efficiently and economically allocate electric power among connected distributed generation units and loads. The use of such algorithms provides flexibility, robustness, and scalability, while it also increases the vulnerability of smart grid to unexpected faults and adversaries. The potential consequences of compromising the power system can be devastating to public safety and economy. Thus, it is important to maintain the acceptable performance of distributed energy management algorithms in a smart grid environment under malicious cyber-attacks. In this paper, a neighborhood-watch-based distributed energy management algorithm is proposed to guarantee the accurate control computation in solving the economic dispatch problem in the presence of compromised generation units. The proposed method achieves the system resilience by performing a reliable distributed control without a central coordinator and allowing all the well-behaving generation units to reach the optimal operating point asymptotically. The effectiveness of the proposed method is demonstrated through case studies under several different adversary scenarios. |
---|---|
ISSN: | 1551-3203 1941-0050 |
DOI: | 10.1109/TII.2015.2496228 |