Short-Term Electric Load Forecasting Using Echo State Networks and PCA Decomposition

In this paper, we approach the problem of forecasting a time series (TS) of an electrical load measured on the Azienda Comunale Energia e Ambiente (ACEA) power grid, the company managing the electricity distribution in Rome, Italy, with an echo state network (ESN) considering two different leading t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2015, Vol.3, p.1931-1943
Hauptverfasser: Bianchi, Filippo Maria, De Santis, Enrico, Rizzi, Antonello, Sadeghian, Alireza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we approach the problem of forecasting a time series (TS) of an electrical load measured on the Azienda Comunale Energia e Ambiente (ACEA) power grid, the company managing the electricity distribution in Rome, Italy, with an echo state network (ESN) considering two different leading times of 10 min and 1 day. We use a standard approach for predicting the load in the next 10 min, while, for a forecast horizon of one day, we represent the data with a high-dimensional multi-variate TS, where the number of variables is equivalent to the quantity of measurements registered in a day. Through the orthogonal transformation returned by PCA decomposition, we reduce the dimensionality of the TS to a lower number k of distinct variables; this allows us to cast the original prediction problem in k different one-step ahead predictions. The overall forecast can be effectively managed by k distinct prediction models, whose outputs are combined together to obtain the final result. We employ a genetic algorithm for tuning the parameters of the ESN and compare its prediction accuracy with a standard autoregressive integrated moving average model.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2015.2485943