DeepPano: Deep Panoramic Representation for 3-D Shape Recognition
This letter introduces a robust representation of 3-D shapes, named DeepPano, learned with deep convolutional neural networks (CNN). Firstly, each 3-D shape is converted into a panoramic view, namely a cylinder projection around its principle axis. Then, a variant of CNN is specifically designed for...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2015-12, Vol.22 (12), p.2339-2343 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This letter introduces a robust representation of 3-D shapes, named DeepPano, learned with deep convolutional neural networks (CNN). Firstly, each 3-D shape is converted into a panoramic view, namely a cylinder projection around its principle axis. Then, a variant of CNN is specifically designed for learning the deep representations directly from such views. Different from typical CNN, a row-wise max-pooling layer is inserted between the convolution and fully-connected layers, making the learned representations invariant to the rotation around a principle axis. Our approach achieves state-of-the-art retrieval/classification results on two large-scale 3-D model datasets (ModelNet-10 and ModelNet-40), outperforming typical methods by a large margin. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2015.2480802 |