Using Memetic Algorithm for Instance Coreference Resolution
Instance coreference resolution is an essential problem in studying semantic web, and it is also critical for the implementation of web of data and future integration and application of semantic data. In this paper, we propose to use Memetic Algorithm (MA) to solve this instance coreference problem...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2016-02, Vol.28 (2), p.580-591 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Instance coreference resolution is an essential problem in studying semantic web, and it is also critical for the implementation of web of data and future integration and application of semantic data. In this paper, we propose to use Memetic Algorithm (MA) to solve this instance coreference problem in a sequential stage, i.e., the instance-level matching is carried out with the result of schema-level matching. We first give the optimization model for schema-level matching and instance-level matching. Then, we, respectively, present profile similarity measures and the rough evaluation metrics with the assumption that the golden alignment for both schema-level matching and instance-level matching is one-to-one. Furthermore, we give the details of the MA. Finally, the experiments of comparing our approach with the state-of-the-art systems on OAEI benchmarks and real-world datasets are conducted and the results demonstrate that our approach is effective. |
---|---|
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/TKDE.2015.2475755 |