Highly Accurate in Vivo Terahertz Spectroscopy of Healthy Skin: Variation of Refractive Index and Absorption Coefficient Along the Human Body

A method to reconstruct the terahertz (THz) refractive index and absorption coefficient of in vivo tissue using THz pulsed spectroscopy (TPS) has been proposed. The method utilizes a reference THz window to fix the sample of interest during the TPS reflection mode measurements. Satellite pulses caus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on terahertz science and technology 2015-09, Vol.5 (5), p.817-827
Hauptverfasser: Zaytsev, Kirill I., Gavdush, Arseniy A., Chernomyrdin, Nikita V., Yurchenko, Stanislav O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method to reconstruct the terahertz (THz) refractive index and absorption coefficient of in vivo tissue using THz pulsed spectroscopy (TPS) has been proposed. The method utilizes a reference THz window to fix the sample of interest during the TPS reflection mode measurements. Satellite pulses caused by multiple THz-wave reflections in the reference window are taken into account to accurately solve the inverse problem. The stability of the proposed method in the presence of various factors, including digital noise in the TPS waveforms and fluctuations of the reference THz window position, has been accurately analyzed. The method has been implemented to study in vivo the THz refractive index and absorption coefficient of the human skin. The skin from three persons has been measured, and the results agree with the well-known data on healthy skin spectroscopy in general, except for several regions of the skin. Thus, for the elbow, the hand, the knee, and the heel the THz refractive index and absorption coefficient considerably differ from the average values. The observed results are of principle importance for further development of novel approaches to skin diagnosis based on THz technologies.
ISSN:2156-342X
2156-3446
DOI:10.1109/TTHZ.2015.2460677