A multifractal wavelet model for positive processes

In this paper, we describe a new multiscale model for characterizing positive-valued and long-range dependent data. The model uses the Haar wavelet transform and puts a constraint on the wavelet coefficients to guarantee positivity, which results in a swift O(N) algorithm to synthesize N-point data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Crouse, M.S., Riedi, R.H., Ribeiro, V.J., Baraniuk, R.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we describe a new multiscale model for characterizing positive-valued and long-range dependent data. The model uses the Haar wavelet transform and puts a constraint on the wavelet coefficients to guarantee positivity, which results in a swift O(N) algorithm to synthesize N-point data sets. We elucidate our model's ability to capture the covariance structure of real data, study its multifractal properties, and derive a scheme for matching it to real data observations. We demonstrate the model's utility by applying it to network traffic synthesis. The flexibility and accuracy of the model and fitting procedure result in a close match to the real data statistics (variance-time plots) and queuing behaviour.
DOI:10.1109/TFSA.1998.721430