Multiagent Supervisory Control for Power Management in DC Microgrids

This paper proposes multiagent supervisory control for precise power management in isolated dc microgrids. Two power management aspects are considered: 1) equal power sharing, which is realized via a proposed distributed equal power sharing algorithm; and 2) optimal power dispatch, which is achieved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2016-03, Vol.7 (2), p.1057-1068
Hauptverfasser: Hamad, Amr A., Azzouz, Maher Abdelkhalek, El-Saadany, Ehab F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes multiagent supervisory control for precise power management in isolated dc microgrids. Two power management aspects are considered: 1) equal power sharing, which is realized via a proposed distributed equal power sharing algorithm; and 2) optimal power dispatch, which is achieved through a proposed distributed equal incremental cost (DEIC) algorithm. Both algorithms offer the additional advantage of the ability to restore the average system voltage to its nominal value. The proposed algorithms are based on the application of the average consensus theory along with voltage sensitivity analysis. Each distributed generation (DG) unit exchanges information with its neighbors, thus locally updating its no-load voltage setting to achieve the supervisory control objectives. The incorporation of DG droop-based control renders the proposed algorithms fully distributed with a reduced number of agents. The stability of the proposed algorithms is addressed, as well as the convergence of the proposed DEIC algorithm. Real-time OPAL-RT simulations demonstrate the effectiveness of the proposed algorithms in a hardware-in-the-loop application.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2015.2452191