Antenna Grouping Based Feedback Compression for FDD-Based Massive MIMO Systems
Recent works on massive multiple-input multiple-output (MIMO) have shown that a potential breakthrough in capacity gains can be achieved by deploying a very large number of antennas at the base station. In order to achieve the performance that massive MIMO systems promise, accurate transmit-side cha...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2015-09, Vol.63 (9), p.3261-3274 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent works on massive multiple-input multiple-output (MIMO) have shown that a potential breakthrough in capacity gains can be achieved by deploying a very large number of antennas at the base station. In order to achieve the performance that massive MIMO systems promise, accurate transmit-side channel state information (CSI) should be available at the base station. While transmit-side CSI can be obtained by employing channel reciprocity in time division duplexing (TDD) systems, explicit feedback of CSI from the user terminal to the base station is needed for frequency division duplexing (FDD) systems. In this paper, we propose an antenna grouping based feedback reduction technique for FDD-based massive MIMO systems. The proposed algorithm, dubbed antenna group beamforming (AGB), maps multiple correlated antenna elements to a single representative value using predesigned patterns. The proposed method modifies the feedback packet by introducing the concept of a header to select a suitable group pattern and a payload to quantize the reduced dimension channel vector. Simulation results show that the proposed method achieves significant feedback overhead reduction over conventional approach performing the vector quantization of whole channel vector under the same target sum rate requirement. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/TCOMM.2015.2460743 |