Improving EFA-STAP performance using persymmetric covariance matrix estimation
This paper deals with the estimation of the clutter covariance matrix in airborne radar space-time adaptive processing (STAP). Based on the persymmetry property, a novel STAP method, referred to as persymmetric extended factored processing (Per-EFA), is derived, which can make a more intensive use o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2015-04, Vol.51 (2), p.924-936 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the estimation of the clutter covariance matrix in airborne radar space-time adaptive processing (STAP). Based on the persymmetry property, a novel STAP method, referred to as persymmetric extended factored processing (Per-EFA), is derived, which can make a more intensive use of the secondary data and improve the STAP performance in training-limited scenarios. Simulation results demonstrate the effectiveness of this method. |
---|---|
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/TAES.2015.130264 |