Improving EFA-STAP performance using persymmetric covariance matrix estimation

This paper deals with the estimation of the clutter covariance matrix in airborne radar space-time adaptive processing (STAP). Based on the persymmetry property, a novel STAP method, referred to as persymmetric extended factored processing (Per-EFA), is derived, which can make a more intensive use o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2015-04, Vol.51 (2), p.924-936
Hauptverfasser: Tong, Yalong, Wang, Tong, Wu, Jianxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the estimation of the clutter covariance matrix in airborne radar space-time adaptive processing (STAP). Based on the persymmetry property, a novel STAP method, referred to as persymmetric extended factored processing (Per-EFA), is derived, which can make a more intensive use of the secondary data and improve the STAP performance in training-limited scenarios. Simulation results demonstrate the effectiveness of this method.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2015.130264