New DAQ System for the CANDLES Experiment
A new data acquisition (DAQ) system for the CANDLES experiment was developed using the SpaceWire protocol and the DAQ-Middleware framework. The CANDLES experiment uses a trigger board and Flash Analog-to-Digital Converters (FADCs). The SpaceWire helps us construct the DAQ system with a flexible and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2015-06, Vol.62 (3), p.1122-1127 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new data acquisition (DAQ) system for the CANDLES experiment was developed using the SpaceWire protocol and the DAQ-Middleware framework. The CANDLES experiment uses a trigger board and Flash Analog-to-Digital Converters (FADCs). The SpaceWire helps us construct the DAQ system with a flexible and multi-path access to FADCs and the trigger board. FADCs have a ring buffer with three buffers to detect sequential decays from backgrounds. We developed the DAQ system with parallel read-out to reduce the dead time at high trigger rates using three read-out personal computers (PCs) that are connected to the three buffers in FADCs one by one. Each PC connects all FADCs and the trigger board and gathers a complete data set of one event without any event builder. The maximum DAQ speed of parallel read-out by three PCs was 2.4 times higher than that of single read-out. In order to collect event data sets from PCs, we built the network distributed DAQ system through Ethernet, which is naturally introduced with the DAQ-Middleware. To realize remote monitoring and histogram modification while the DAQ running, we also developed a dynamic online monitor system independent with the DAQ-Middleware. |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/TNS.2015.2423673 |