Video Affective Content Analysis: A Survey of State-of-the-Art Methods

Video affective content analysis has been an active research area in recent decades, since emotion is an important component in the classification and retrieval of videos. Video affective content analysis can be divided into two approaches: direct and implicit. Direct approaches infer the affective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on affective computing 2015-10, Vol.6 (4), p.410-430
Hauptverfasser: Wang, Shangfei, Ji, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Video affective content analysis has been an active research area in recent decades, since emotion is an important component in the classification and retrieval of videos. Video affective content analysis can be divided into two approaches: direct and implicit. Direct approaches infer the affective content of videos directly from related audiovisual features. Implicit approaches, on the other hand, detect affective content from videos based on an automatic analysis of a user's spontaneous response while consuming the videos. This paper first proposes a general framework for video affective content analysis, which includes video content, emotional descriptors, and users' spontaneous nonverbal responses, as well as the relationships between the three. Then, we survey current research in both direct and implicit video affective content analysis, with a focus on direct video affective content analysis. Lastly, we identify several challenges in this field and put forward recommendations for future research.
ISSN:1949-3045
1949-3045
DOI:10.1109/TAFFC.2015.2432791