Combining Bottom-Up and Top-Down Segmentation: A Way to Realize High-Performance Organic Circuit
In this letter, the top-down and bottom-up segmentations were integrated together to realize high-performance organic devices and circuits. By combining photolithography with in situ polymerization, high conductive polypyrrole was patterned and used as electrodes for organic field-effect transistors...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2015-07, Vol.36 (7), p.684-686 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, the top-down and bottom-up segmentations were integrated together to realize high-performance organic devices and circuits. By combining photolithography with in situ polymerization, high conductive polypyrrole was patterned and used as electrodes for organic field-effect transistors (OFETs). With pentacene as P-type organic semiconductor and N,N'-bis (n-octyl)-Dicyanop-erylene-3,4:9,10-is (dicarboximide) (PDI-8CN2)/copper hexadecafluorophthalocyanine (CuPcF16) as N-type ones, both P-type and N-type OFETs exhibit excellent stability. Air-stable complementary inverters with the highest gain of 16.1 were realized. The results showed that the method was suitable for the fabrication of organic circuits. |
---|---|
ISSN: | 0741-3106 1558-0563 |
DOI: | 10.1109/LED.2015.2428614 |