Hardware Accelerator for Probabilistic Inference in 65-nm CMOS
A hardware accelerator is presented to compute the probabilistic inference for a Bayesian network (BN) in distributed sensing applications. For energy efficiency, the accelerator is operated at a near-threshold voltage of 0.5 V, while achieving a maximum clock frequency of 33 MHz. Clique-tree messag...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2016-03, Vol.24 (3), p.837-845 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 845 |
---|---|
container_issue | 3 |
container_start_page | 837 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 24 |
creator | Khan, Osama U. Wentzloff, David D. |
description | A hardware accelerator is presented to compute the probabilistic inference for a Bayesian network (BN) in distributed sensing applications. For energy efficiency, the accelerator is operated at a near-threshold voltage of 0.5 V, while achieving a maximum clock frequency of 33 MHz. Clique-tree message passing algorithm is leveraged to compute the probabilistic inference. The theoretical maximum size of a factor that the proposed hardware accelerator can handle is 2 (8×20) =160 entries, which is sufficient for handling massive BNs, such as PATHFINDER, MUNIN, and so on (>1000 nodes). A Logical Alarm Reduction Mechanism (ALARM) BN is used to benchmark the performance of the accelerator. The accelerator consumes 76 nJ to execute the ALARM network using a clique-tree message-passing algorithm, while the same algorithm executed on an ultralow-power microcontroller consumes 20 mJ. |
doi_str_mv | 10.1109/TVLSI.2015.2420663 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7091000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7091000</ieee_id><sourcerecordid>1815984687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-60592959296311f6ea89bf46158d8e56bea728cd9ba936bb86764170d449acf33</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWKtfQC8LXrxsnUk2_y5CKWoLlQqtXkM2m4Ut7W5Ntojf3tSKBwceM4ffGx6PkGuEESLo-9X7fDkbUUA-ogUFIdgJGSDnMtdpTtMNguWKIpyTixjXAFgUGgbkYWpD9WmDz8bO-Y0Ptu9CVie9hq60ZbNpYt-4bNbWPvjW-axpM8HzdptNXhbLS3JW2030V797SN6eHleTaT5fPM8m43numKR9LoBrqg8SDLEW3ipd1oVArirluSi9lVS5SpdWM1GWSkhRoIQqhbSuZmxI7o5_d6H72PvYm20TU96NbX23jwYVcq0KoWRCb_-h624f2pTOoFSSCg6UJ4oeKRe6GIOvzS40Wxu-DII5VGp-KjWHSs1vpcl0czQ13vs_gwSNAMC-AQ5xb24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787265025</pqid></control><display><type>article</type><title>Hardware Accelerator for Probabilistic Inference in 65-nm CMOS</title><source>IEEE Electronic Library (IEL)</source><creator>Khan, Osama U. ; Wentzloff, David D.</creator><creatorcontrib>Khan, Osama U. ; Wentzloff, David D.</creatorcontrib><description>A hardware accelerator is presented to compute the probabilistic inference for a Bayesian network (BN) in distributed sensing applications. For energy efficiency, the accelerator is operated at a near-threshold voltage of 0.5 V, while achieving a maximum clock frequency of 33 MHz. Clique-tree message passing algorithm is leveraged to compute the probabilistic inference. The theoretical maximum size of a factor that the proposed hardware accelerator can handle is 2 (8×20) =160 entries, which is sufficient for handling massive BNs, such as PATHFINDER, MUNIN, and so on (>1000 nodes). A Logical Alarm Reduction Mechanism (ALARM) BN is used to benchmark the performance of the accelerator. The accelerator consumes 76 nJ to execute the ALARM network using a clique-tree message-passing algorithm, while the same algorithm executed on an ultralow-power microcontroller consumes 20 mJ.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2015.2420663</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerator boards ; Accelerators ; Alarm systems ; Algorithms ; Bayes methods ; Bayesian analysis ; Bayesian network (BN) ; clique-tree ; Consumption ; embedded machine learning ; Hardware ; hardware accelerator ; Indexes ; Inference algorithms ; intelligent sensor node ; Message passing ; probabilistic graphical model ; Probabilistic inference ; Probabilistic logic ; Registers ; Very large scale integration</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2016-03, Vol.24 (3), p.837-845</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-60592959296311f6ea89bf46158d8e56bea728cd9ba936bb86764170d449acf33</citedby><cites>FETCH-LOGICAL-c372t-60592959296311f6ea89bf46158d8e56bea728cd9ba936bb86764170d449acf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7091000$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7091000$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khan, Osama U.</creatorcontrib><creatorcontrib>Wentzloff, David D.</creatorcontrib><title>Hardware Accelerator for Probabilistic Inference in 65-nm CMOS</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>A hardware accelerator is presented to compute the probabilistic inference for a Bayesian network (BN) in distributed sensing applications. For energy efficiency, the accelerator is operated at a near-threshold voltage of 0.5 V, while achieving a maximum clock frequency of 33 MHz. Clique-tree message passing algorithm is leveraged to compute the probabilistic inference. The theoretical maximum size of a factor that the proposed hardware accelerator can handle is 2 (8×20) =160 entries, which is sufficient for handling massive BNs, such as PATHFINDER, MUNIN, and so on (>1000 nodes). A Logical Alarm Reduction Mechanism (ALARM) BN is used to benchmark the performance of the accelerator. The accelerator consumes 76 nJ to execute the ALARM network using a clique-tree message-passing algorithm, while the same algorithm executed on an ultralow-power microcontroller consumes 20 mJ.</description><subject>Accelerator boards</subject><subject>Accelerators</subject><subject>Alarm systems</subject><subject>Algorithms</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian network (BN)</subject><subject>clique-tree</subject><subject>Consumption</subject><subject>embedded machine learning</subject><subject>Hardware</subject><subject>hardware accelerator</subject><subject>Indexes</subject><subject>Inference algorithms</subject><subject>intelligent sensor node</subject><subject>Message passing</subject><subject>probabilistic graphical model</subject><subject>Probabilistic inference</subject><subject>Probabilistic logic</subject><subject>Registers</subject><subject>Very large scale integration</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9LAzEQxYMoWKtfQC8LXrxsnUk2_y5CKWoLlQqtXkM2m4Ut7W5Ntojf3tSKBwceM4ffGx6PkGuEESLo-9X7fDkbUUA-ogUFIdgJGSDnMtdpTtMNguWKIpyTixjXAFgUGgbkYWpD9WmDz8bO-Y0Ptu9CVie9hq60ZbNpYt-4bNbWPvjW-axpM8HzdptNXhbLS3JW2030V797SN6eHleTaT5fPM8m43numKR9LoBrqg8SDLEW3ipd1oVArirluSi9lVS5SpdWM1GWSkhRoIQqhbSuZmxI7o5_d6H72PvYm20TU96NbX23jwYVcq0KoWRCb_-h624f2pTOoFSSCg6UJ4oeKRe6GIOvzS40Wxu-DII5VGp-KjWHSs1vpcl0czQ13vs_gwSNAMC-AQ5xb24</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Khan, Osama U.</creator><creator>Wentzloff, David D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201603</creationdate><title>Hardware Accelerator for Probabilistic Inference in 65-nm CMOS</title><author>Khan, Osama U. ; Wentzloff, David D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-60592959296311f6ea89bf46158d8e56bea728cd9ba936bb86764170d449acf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accelerator boards</topic><topic>Accelerators</topic><topic>Alarm systems</topic><topic>Algorithms</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian network (BN)</topic><topic>clique-tree</topic><topic>Consumption</topic><topic>embedded machine learning</topic><topic>Hardware</topic><topic>hardware accelerator</topic><topic>Indexes</topic><topic>Inference algorithms</topic><topic>intelligent sensor node</topic><topic>Message passing</topic><topic>probabilistic graphical model</topic><topic>Probabilistic inference</topic><topic>Probabilistic logic</topic><topic>Registers</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Osama U.</creatorcontrib><creatorcontrib>Wentzloff, David D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khan, Osama U.</au><au>Wentzloff, David D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardware Accelerator for Probabilistic Inference in 65-nm CMOS</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2016-03</date><risdate>2016</risdate><volume>24</volume><issue>3</issue><spage>837</spage><epage>845</epage><pages>837-845</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>A hardware accelerator is presented to compute the probabilistic inference for a Bayesian network (BN) in distributed sensing applications. For energy efficiency, the accelerator is operated at a near-threshold voltage of 0.5 V, while achieving a maximum clock frequency of 33 MHz. Clique-tree message passing algorithm is leveraged to compute the probabilistic inference. The theoretical maximum size of a factor that the proposed hardware accelerator can handle is 2 (8×20) =160 entries, which is sufficient for handling massive BNs, such as PATHFINDER, MUNIN, and so on (>1000 nodes). A Logical Alarm Reduction Mechanism (ALARM) BN is used to benchmark the performance of the accelerator. The accelerator consumes 76 nJ to execute the ALARM network using a clique-tree message-passing algorithm, while the same algorithm executed on an ultralow-power microcontroller consumes 20 mJ.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2015.2420663</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2016-03, Vol.24 (3), p.837-845 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_ieee_primary_7091000 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerator boards Accelerators Alarm systems Algorithms Bayes methods Bayesian analysis Bayesian network (BN) clique-tree Consumption embedded machine learning Hardware hardware accelerator Indexes Inference algorithms intelligent sensor node Message passing probabilistic graphical model Probabilistic inference Probabilistic logic Registers Very large scale integration |
title | Hardware Accelerator for Probabilistic Inference in 65-nm CMOS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardware%20Accelerator%20for%20Probabilistic%20Inference%20in%2065-nm%20CMOS&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Khan,%20Osama%20U.&rft.date=2016-03&rft.volume=24&rft.issue=3&rft.spage=837&rft.epage=845&rft.pages=837-845&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2015.2420663&rft_dat=%3Cproquest_RIE%3E1815984687%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787265025&rft_id=info:pmid/&rft_ieee_id=7091000&rfr_iscdi=true |