Hardware Accelerator for Probabilistic Inference in 65-nm CMOS

A hardware accelerator is presented to compute the probabilistic inference for a Bayesian network (BN) in distributed sensing applications. For energy efficiency, the accelerator is operated at a near-threshold voltage of 0.5 V, while achieving a maximum clock frequency of 33 MHz. Clique-tree messag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2016-03, Vol.24 (3), p.837-845
Hauptverfasser: Khan, Osama U., Wentzloff, David D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 845
container_issue 3
container_start_page 837
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 24
creator Khan, Osama U.
Wentzloff, David D.
description A hardware accelerator is presented to compute the probabilistic inference for a Bayesian network (BN) in distributed sensing applications. For energy efficiency, the accelerator is operated at a near-threshold voltage of 0.5 V, while achieving a maximum clock frequency of 33 MHz. Clique-tree message passing algorithm is leveraged to compute the probabilistic inference. The theoretical maximum size of a factor that the proposed hardware accelerator can handle is 2 (8×20) =160 entries, which is sufficient for handling massive BNs, such as PATHFINDER, MUNIN, and so on (>1000 nodes). A Logical Alarm Reduction Mechanism (ALARM) BN is used to benchmark the performance of the accelerator. The accelerator consumes 76 nJ to execute the ALARM network using a clique-tree message-passing algorithm, while the same algorithm executed on an ultralow-power microcontroller consumes 20 mJ.
doi_str_mv 10.1109/TVLSI.2015.2420663
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7091000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7091000</ieee_id><sourcerecordid>1815984687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-60592959296311f6ea89bf46158d8e56bea728cd9ba936bb86764170d449acf33</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWKtfQC8LXrxsnUk2_y5CKWoLlQqtXkM2m4Ut7W5Ntojf3tSKBwceM4ffGx6PkGuEESLo-9X7fDkbUUA-ogUFIdgJGSDnMtdpTtMNguWKIpyTixjXAFgUGgbkYWpD9WmDz8bO-Y0Ptu9CVie9hq60ZbNpYt-4bNbWPvjW-axpM8HzdptNXhbLS3JW2030V797SN6eHleTaT5fPM8m43numKR9LoBrqg8SDLEW3ipd1oVArirluSi9lVS5SpdWM1GWSkhRoIQqhbSuZmxI7o5_d6H72PvYm20TU96NbX23jwYVcq0KoWRCb_-h624f2pTOoFSSCg6UJ4oeKRe6GIOvzS40Wxu-DII5VGp-KjWHSs1vpcl0czQ13vs_gwSNAMC-AQ5xb24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787265025</pqid></control><display><type>article</type><title>Hardware Accelerator for Probabilistic Inference in 65-nm CMOS</title><source>IEEE Electronic Library (IEL)</source><creator>Khan, Osama U. ; Wentzloff, David D.</creator><creatorcontrib>Khan, Osama U. ; Wentzloff, David D.</creatorcontrib><description>A hardware accelerator is presented to compute the probabilistic inference for a Bayesian network (BN) in distributed sensing applications. For energy efficiency, the accelerator is operated at a near-threshold voltage of 0.5 V, while achieving a maximum clock frequency of 33 MHz. Clique-tree message passing algorithm is leveraged to compute the probabilistic inference. The theoretical maximum size of a factor that the proposed hardware accelerator can handle is 2 (8×20) =160 entries, which is sufficient for handling massive BNs, such as PATHFINDER, MUNIN, and so on (&gt;1000 nodes). A Logical Alarm Reduction Mechanism (ALARM) BN is used to benchmark the performance of the accelerator. The accelerator consumes 76 nJ to execute the ALARM network using a clique-tree message-passing algorithm, while the same algorithm executed on an ultralow-power microcontroller consumes 20 mJ.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2015.2420663</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerator boards ; Accelerators ; Alarm systems ; Algorithms ; Bayes methods ; Bayesian analysis ; Bayesian network (BN) ; clique-tree ; Consumption ; embedded machine learning ; Hardware ; hardware accelerator ; Indexes ; Inference algorithms ; intelligent sensor node ; Message passing ; probabilistic graphical model ; Probabilistic inference ; Probabilistic logic ; Registers ; Very large scale integration</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2016-03, Vol.24 (3), p.837-845</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-60592959296311f6ea89bf46158d8e56bea728cd9ba936bb86764170d449acf33</citedby><cites>FETCH-LOGICAL-c372t-60592959296311f6ea89bf46158d8e56bea728cd9ba936bb86764170d449acf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7091000$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7091000$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khan, Osama U.</creatorcontrib><creatorcontrib>Wentzloff, David D.</creatorcontrib><title>Hardware Accelerator for Probabilistic Inference in 65-nm CMOS</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>A hardware accelerator is presented to compute the probabilistic inference for a Bayesian network (BN) in distributed sensing applications. For energy efficiency, the accelerator is operated at a near-threshold voltage of 0.5 V, while achieving a maximum clock frequency of 33 MHz. Clique-tree message passing algorithm is leveraged to compute the probabilistic inference. The theoretical maximum size of a factor that the proposed hardware accelerator can handle is 2 (8×20) =160 entries, which is sufficient for handling massive BNs, such as PATHFINDER, MUNIN, and so on (&gt;1000 nodes). A Logical Alarm Reduction Mechanism (ALARM) BN is used to benchmark the performance of the accelerator. The accelerator consumes 76 nJ to execute the ALARM network using a clique-tree message-passing algorithm, while the same algorithm executed on an ultralow-power microcontroller consumes 20 mJ.</description><subject>Accelerator boards</subject><subject>Accelerators</subject><subject>Alarm systems</subject><subject>Algorithms</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian network (BN)</subject><subject>clique-tree</subject><subject>Consumption</subject><subject>embedded machine learning</subject><subject>Hardware</subject><subject>hardware accelerator</subject><subject>Indexes</subject><subject>Inference algorithms</subject><subject>intelligent sensor node</subject><subject>Message passing</subject><subject>probabilistic graphical model</subject><subject>Probabilistic inference</subject><subject>Probabilistic logic</subject><subject>Registers</subject><subject>Very large scale integration</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9LAzEQxYMoWKtfQC8LXrxsnUk2_y5CKWoLlQqtXkM2m4Ut7W5Ntojf3tSKBwceM4ffGx6PkGuEESLo-9X7fDkbUUA-ogUFIdgJGSDnMtdpTtMNguWKIpyTixjXAFgUGgbkYWpD9WmDz8bO-Y0Ptu9CVie9hq60ZbNpYt-4bNbWPvjW-axpM8HzdptNXhbLS3JW2030V797SN6eHleTaT5fPM8m43numKR9LoBrqg8SDLEW3ipd1oVArirluSi9lVS5SpdWM1GWSkhRoIQqhbSuZmxI7o5_d6H72PvYm20TU96NbX23jwYVcq0KoWRCb_-h624f2pTOoFSSCg6UJ4oeKRe6GIOvzS40Wxu-DII5VGp-KjWHSs1vpcl0czQ13vs_gwSNAMC-AQ5xb24</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Khan, Osama U.</creator><creator>Wentzloff, David D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201603</creationdate><title>Hardware Accelerator for Probabilistic Inference in 65-nm CMOS</title><author>Khan, Osama U. ; Wentzloff, David D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-60592959296311f6ea89bf46158d8e56bea728cd9ba936bb86764170d449acf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accelerator boards</topic><topic>Accelerators</topic><topic>Alarm systems</topic><topic>Algorithms</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian network (BN)</topic><topic>clique-tree</topic><topic>Consumption</topic><topic>embedded machine learning</topic><topic>Hardware</topic><topic>hardware accelerator</topic><topic>Indexes</topic><topic>Inference algorithms</topic><topic>intelligent sensor node</topic><topic>Message passing</topic><topic>probabilistic graphical model</topic><topic>Probabilistic inference</topic><topic>Probabilistic logic</topic><topic>Registers</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Osama U.</creatorcontrib><creatorcontrib>Wentzloff, David D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khan, Osama U.</au><au>Wentzloff, David D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardware Accelerator for Probabilistic Inference in 65-nm CMOS</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2016-03</date><risdate>2016</risdate><volume>24</volume><issue>3</issue><spage>837</spage><epage>845</epage><pages>837-845</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>A hardware accelerator is presented to compute the probabilistic inference for a Bayesian network (BN) in distributed sensing applications. For energy efficiency, the accelerator is operated at a near-threshold voltage of 0.5 V, while achieving a maximum clock frequency of 33 MHz. Clique-tree message passing algorithm is leveraged to compute the probabilistic inference. The theoretical maximum size of a factor that the proposed hardware accelerator can handle is 2 (8×20) =160 entries, which is sufficient for handling massive BNs, such as PATHFINDER, MUNIN, and so on (&gt;1000 nodes). A Logical Alarm Reduction Mechanism (ALARM) BN is used to benchmark the performance of the accelerator. The accelerator consumes 76 nJ to execute the ALARM network using a clique-tree message-passing algorithm, while the same algorithm executed on an ultralow-power microcontroller consumes 20 mJ.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2015.2420663</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2016-03, Vol.24 (3), p.837-845
issn 1063-8210
1557-9999
language eng
recordid cdi_ieee_primary_7091000
source IEEE Electronic Library (IEL)
subjects Accelerator boards
Accelerators
Alarm systems
Algorithms
Bayes methods
Bayesian analysis
Bayesian network (BN)
clique-tree
Consumption
embedded machine learning
Hardware
hardware accelerator
Indexes
Inference algorithms
intelligent sensor node
Message passing
probabilistic graphical model
Probabilistic inference
Probabilistic logic
Registers
Very large scale integration
title Hardware Accelerator for Probabilistic Inference in 65-nm CMOS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardware%20Accelerator%20for%20Probabilistic%20Inference%20in%2065-nm%20CMOS&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Khan,%20Osama%20U.&rft.date=2016-03&rft.volume=24&rft.issue=3&rft.spage=837&rft.epage=845&rft.pages=837-845&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2015.2420663&rft_dat=%3Cproquest_RIE%3E1815984687%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787265025&rft_id=info:pmid/&rft_ieee_id=7091000&rfr_iscdi=true