Hardware Accelerator for Probabilistic Inference in 65-nm CMOS
A hardware accelerator is presented to compute the probabilistic inference for a Bayesian network (BN) in distributed sensing applications. For energy efficiency, the accelerator is operated at a near-threshold voltage of 0.5 V, while achieving a maximum clock frequency of 33 MHz. Clique-tree messag...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2016-03, Vol.24 (3), p.837-845 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A hardware accelerator is presented to compute the probabilistic inference for a Bayesian network (BN) in distributed sensing applications. For energy efficiency, the accelerator is operated at a near-threshold voltage of 0.5 V, while achieving a maximum clock frequency of 33 MHz. Clique-tree message passing algorithm is leveraged to compute the probabilistic inference. The theoretical maximum size of a factor that the proposed hardware accelerator can handle is 2 (8×20) =160 entries, which is sufficient for handling massive BNs, such as PATHFINDER, MUNIN, and so on (>1000 nodes). A Logical Alarm Reduction Mechanism (ALARM) BN is used to benchmark the performance of the accelerator. The accelerator consumes 76 nJ to execute the ALARM network using a clique-tree message-passing algorithm, while the same algorithm executed on an ultralow-power microcontroller consumes 20 mJ. |
---|---|
ISSN: | 1063-8210 1557-9999 |
DOI: | 10.1109/TVLSI.2015.2420663 |