Elimination of Outliers from 2-D Point Sets Using the Helmholtz Principle
A method for modeling and removing outliers from 2-D sets of scattered points is presented. The method relies on a principle due to Helmholtz stating that every large deviation from uniform noise should be perceptible, provided that the deviation is generated by an a contrario model of geometric str...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2015-10, Vol.22 (10), p.1638-1642 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1642 |
---|---|
container_issue | 10 |
container_start_page | 1638 |
container_title | IEEE signal processing letters |
container_volume | 22 |
creator | Gerogiannis, Demetrios P. Nikou, Christophoros Likas, Aristidis |
description | A method for modeling and removing outliers from 2-D sets of scattered points is presented. The method relies on a principle due to Helmholtz stating that every large deviation from uniform noise should be perceptible, provided that the deviation is generated by an a contrario model of geometric structures. By assuming local linearity, we first employ a robust algorithm to model the local manifold of the corrupted data by local line segments. Our rationale is that long line segments should not be expected in a noisy set of points. This assumption leads to the modeling of the lengths of the line segments by a Pareto distribution, which is the adopted a contrario model for the observations. The model is successfully evaluated on two problems in computer vision: shape recovery and linear regression. |
doi_str_mv | 10.1109/LSP.2015.2420714 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7081346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7081346</ieee_id><sourcerecordid>10_1109_LSP_2015_2420714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-1115d69571bbb7fb283128b449a7f38b272a9718ba05e4792f245812955740343</originalsourceid><addsrcrecordid>eNo90EtPAjEUBeDGaCKiexM3_QOD9_ZB26VBBJJJIEHWkym2UjMP0taF_nqHQFzds7jnLD5CHhEmiGCey-1mwgDlhAkGCsUVGaGUumB8itdDBgWFMaBvyV1KXwCgUcsRWc2b0IauzqHvaO_p-js3wcVEfexbyopXuulDl-nW5UR3KXSfNB8cXbqmPfRN_qWbGLp9ODbuntz4uknu4XLHZPc2f58ti3K9WM1eymLPQeYCEeXH1EiF1lrlLdMcmbZCmFp5ri1TrDYKta1BOqEM80xIjcxIqQRwwccEzrv72KcUna-OMbR1_KkQqhNFNVBUJ4rqQjFUns6V4Jz7f1cDARdT_gcJk1ga</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Elimination of Outliers from 2-D Point Sets Using the Helmholtz Principle</title><source>IEEE Electronic Library (IEL)</source><creator>Gerogiannis, Demetrios P. ; Nikou, Christophoros ; Likas, Aristidis</creator><creatorcontrib>Gerogiannis, Demetrios P. ; Nikou, Christophoros ; Likas, Aristidis</creatorcontrib><description>A method for modeling and removing outliers from 2-D sets of scattered points is presented. The method relies on a principle due to Helmholtz stating that every large deviation from uniform noise should be perceptible, provided that the deviation is generated by an a contrario model of geometric structures. By assuming local linearity, we first employ a robust algorithm to model the local manifold of the corrupted data by local line segments. Our rationale is that long line segments should not be expected in a noisy set of points. This assumption leads to the modeling of the lengths of the line segments by a Pareto distribution, which is the adopted a contrario model for the observations. The model is successfully evaluated on two problems in computer vision: shape recovery and linear regression.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2015.2420714</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Computer vision ; Data models ; Linear regression ; Manifolds ; Noise ; outlier modeling ; point cloud ; Shape ; shape detection ; Signal processing algorithms</subject><ispartof>IEEE signal processing letters, 2015-10, Vol.22 (10), p.1638-1642</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-1115d69571bbb7fb283128b449a7f38b272a9718ba05e4792f245812955740343</citedby><cites>FETCH-LOGICAL-c305t-1115d69571bbb7fb283128b449a7f38b272a9718ba05e4792f245812955740343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7081346$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7081346$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gerogiannis, Demetrios P.</creatorcontrib><creatorcontrib>Nikou, Christophoros</creatorcontrib><creatorcontrib>Likas, Aristidis</creatorcontrib><title>Elimination of Outliers from 2-D Point Sets Using the Helmholtz Principle</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>A method for modeling and removing outliers from 2-D sets of scattered points is presented. The method relies on a principle due to Helmholtz stating that every large deviation from uniform noise should be perceptible, provided that the deviation is generated by an a contrario model of geometric structures. By assuming local linearity, we first employ a robust algorithm to model the local manifold of the corrupted data by local line segments. Our rationale is that long line segments should not be expected in a noisy set of points. This assumption leads to the modeling of the lengths of the line segments by a Pareto distribution, which is the adopted a contrario model for the observations. The model is successfully evaluated on two problems in computer vision: shape recovery and linear regression.</description><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Data models</subject><subject>Linear regression</subject><subject>Manifolds</subject><subject>Noise</subject><subject>outlier modeling</subject><subject>point cloud</subject><subject>Shape</subject><subject>shape detection</subject><subject>Signal processing algorithms</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo90EtPAjEUBeDGaCKiexM3_QOD9_ZB26VBBJJJIEHWkym2UjMP0taF_nqHQFzds7jnLD5CHhEmiGCey-1mwgDlhAkGCsUVGaGUumB8itdDBgWFMaBvyV1KXwCgUcsRWc2b0IauzqHvaO_p-js3wcVEfexbyopXuulDl-nW5UR3KXSfNB8cXbqmPfRN_qWbGLp9ODbuntz4uknu4XLHZPc2f58ti3K9WM1eymLPQeYCEeXH1EiF1lrlLdMcmbZCmFp5ri1TrDYKta1BOqEM80xIjcxIqQRwwccEzrv72KcUna-OMbR1_KkQqhNFNVBUJ4rqQjFUns6V4Jz7f1cDARdT_gcJk1ga</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Gerogiannis, Demetrios P.</creator><creator>Nikou, Christophoros</creator><creator>Likas, Aristidis</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201510</creationdate><title>Elimination of Outliers from 2-D Point Sets Using the Helmholtz Principle</title><author>Gerogiannis, Demetrios P. ; Nikou, Christophoros ; Likas, Aristidis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-1115d69571bbb7fb283128b449a7f38b272a9718ba05e4792f245812955740343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Data models</topic><topic>Linear regression</topic><topic>Manifolds</topic><topic>Noise</topic><topic>outlier modeling</topic><topic>point cloud</topic><topic>Shape</topic><topic>shape detection</topic><topic>Signal processing algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerogiannis, Demetrios P.</creatorcontrib><creatorcontrib>Nikou, Christophoros</creatorcontrib><creatorcontrib>Likas, Aristidis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gerogiannis, Demetrios P.</au><au>Nikou, Christophoros</au><au>Likas, Aristidis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elimination of Outliers from 2-D Point Sets Using the Helmholtz Principle</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2015-10</date><risdate>2015</risdate><volume>22</volume><issue>10</issue><spage>1638</spage><epage>1642</epage><pages>1638-1642</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>A method for modeling and removing outliers from 2-D sets of scattered points is presented. The method relies on a principle due to Helmholtz stating that every large deviation from uniform noise should be perceptible, provided that the deviation is generated by an a contrario model of geometric structures. By assuming local linearity, we first employ a robust algorithm to model the local manifold of the corrupted data by local line segments. Our rationale is that long line segments should not be expected in a noisy set of points. This assumption leads to the modeling of the lengths of the line segments by a Pareto distribution, which is the adopted a contrario model for the observations. The model is successfully evaluated on two problems in computer vision: shape recovery and linear regression.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2015.2420714</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2015-10, Vol.22 (10), p.1638-1642 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_7081346 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Computer vision Data models Linear regression Manifolds Noise outlier modeling point cloud Shape shape detection Signal processing algorithms |
title | Elimination of Outliers from 2-D Point Sets Using the Helmholtz Principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elimination%20of%20Outliers%20from%202-D%20Point%20Sets%20Using%20the%20Helmholtz%20Principle&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Gerogiannis,%20Demetrios%20P.&rft.date=2015-10&rft.volume=22&rft.issue=10&rft.spage=1638&rft.epage=1642&rft.pages=1638-1642&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2015.2420714&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2015_2420714%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7081346&rfr_iscdi=true |