Elimination of Outliers from 2-D Point Sets Using the Helmholtz Principle

A method for modeling and removing outliers from 2-D sets of scattered points is presented. The method relies on a principle due to Helmholtz stating that every large deviation from uniform noise should be perceptible, provided that the deviation is generated by an a contrario model of geometric str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2015-10, Vol.22 (10), p.1638-1642
Hauptverfasser: Gerogiannis, Demetrios P., Nikou, Christophoros, Likas, Aristidis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1642
container_issue 10
container_start_page 1638
container_title IEEE signal processing letters
container_volume 22
creator Gerogiannis, Demetrios P.
Nikou, Christophoros
Likas, Aristidis
description A method for modeling and removing outliers from 2-D sets of scattered points is presented. The method relies on a principle due to Helmholtz stating that every large deviation from uniform noise should be perceptible, provided that the deviation is generated by an a contrario model of geometric structures. By assuming local linearity, we first employ a robust algorithm to model the local manifold of the corrupted data by local line segments. Our rationale is that long line segments should not be expected in a noisy set of points. This assumption leads to the modeling of the lengths of the line segments by a Pareto distribution, which is the adopted a contrario model for the observations. The model is successfully evaluated on two problems in computer vision: shape recovery and linear regression.
doi_str_mv 10.1109/LSP.2015.2420714
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7081346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7081346</ieee_id><sourcerecordid>10_1109_LSP_2015_2420714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-1115d69571bbb7fb283128b449a7f38b272a9718ba05e4792f245812955740343</originalsourceid><addsrcrecordid>eNo90EtPAjEUBeDGaCKiexM3_QOD9_ZB26VBBJJJIEHWkym2UjMP0taF_nqHQFzds7jnLD5CHhEmiGCey-1mwgDlhAkGCsUVGaGUumB8itdDBgWFMaBvyV1KXwCgUcsRWc2b0IauzqHvaO_p-js3wcVEfexbyopXuulDl-nW5UR3KXSfNB8cXbqmPfRN_qWbGLp9ODbuntz4uknu4XLHZPc2f58ti3K9WM1eymLPQeYCEeXH1EiF1lrlLdMcmbZCmFp5ri1TrDYKta1BOqEM80xIjcxIqQRwwccEzrv72KcUna-OMbR1_KkQqhNFNVBUJ4rqQjFUns6V4Jz7f1cDARdT_gcJk1ga</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Elimination of Outliers from 2-D Point Sets Using the Helmholtz Principle</title><source>IEEE Electronic Library (IEL)</source><creator>Gerogiannis, Demetrios P. ; Nikou, Christophoros ; Likas, Aristidis</creator><creatorcontrib>Gerogiannis, Demetrios P. ; Nikou, Christophoros ; Likas, Aristidis</creatorcontrib><description>A method for modeling and removing outliers from 2-D sets of scattered points is presented. The method relies on a principle due to Helmholtz stating that every large deviation from uniform noise should be perceptible, provided that the deviation is generated by an a contrario model of geometric structures. By assuming local linearity, we first employ a robust algorithm to model the local manifold of the corrupted data by local line segments. Our rationale is that long line segments should not be expected in a noisy set of points. This assumption leads to the modeling of the lengths of the line segments by a Pareto distribution, which is the adopted a contrario model for the observations. The model is successfully evaluated on two problems in computer vision: shape recovery and linear regression.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2015.2420714</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Computer vision ; Data models ; Linear regression ; Manifolds ; Noise ; outlier modeling ; point cloud ; Shape ; shape detection ; Signal processing algorithms</subject><ispartof>IEEE signal processing letters, 2015-10, Vol.22 (10), p.1638-1642</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-1115d69571bbb7fb283128b449a7f38b272a9718ba05e4792f245812955740343</citedby><cites>FETCH-LOGICAL-c305t-1115d69571bbb7fb283128b449a7f38b272a9718ba05e4792f245812955740343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7081346$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7081346$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gerogiannis, Demetrios P.</creatorcontrib><creatorcontrib>Nikou, Christophoros</creatorcontrib><creatorcontrib>Likas, Aristidis</creatorcontrib><title>Elimination of Outliers from 2-D Point Sets Using the Helmholtz Principle</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>A method for modeling and removing outliers from 2-D sets of scattered points is presented. The method relies on a principle due to Helmholtz stating that every large deviation from uniform noise should be perceptible, provided that the deviation is generated by an a contrario model of geometric structures. By assuming local linearity, we first employ a robust algorithm to model the local manifold of the corrupted data by local line segments. Our rationale is that long line segments should not be expected in a noisy set of points. This assumption leads to the modeling of the lengths of the line segments by a Pareto distribution, which is the adopted a contrario model for the observations. The model is successfully evaluated on two problems in computer vision: shape recovery and linear regression.</description><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Data models</subject><subject>Linear regression</subject><subject>Manifolds</subject><subject>Noise</subject><subject>outlier modeling</subject><subject>point cloud</subject><subject>Shape</subject><subject>shape detection</subject><subject>Signal processing algorithms</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo90EtPAjEUBeDGaCKiexM3_QOD9_ZB26VBBJJJIEHWkym2UjMP0taF_nqHQFzds7jnLD5CHhEmiGCey-1mwgDlhAkGCsUVGaGUumB8itdDBgWFMaBvyV1KXwCgUcsRWc2b0IauzqHvaO_p-js3wcVEfexbyopXuulDl-nW5UR3KXSfNB8cXbqmPfRN_qWbGLp9ODbuntz4uknu4XLHZPc2f58ti3K9WM1eymLPQeYCEeXH1EiF1lrlLdMcmbZCmFp5ri1TrDYKta1BOqEM80xIjcxIqQRwwccEzrv72KcUna-OMbR1_KkQqhNFNVBUJ4rqQjFUns6V4Jz7f1cDARdT_gcJk1ga</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Gerogiannis, Demetrios P.</creator><creator>Nikou, Christophoros</creator><creator>Likas, Aristidis</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201510</creationdate><title>Elimination of Outliers from 2-D Point Sets Using the Helmholtz Principle</title><author>Gerogiannis, Demetrios P. ; Nikou, Christophoros ; Likas, Aristidis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-1115d69571bbb7fb283128b449a7f38b272a9718ba05e4792f245812955740343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Data models</topic><topic>Linear regression</topic><topic>Manifolds</topic><topic>Noise</topic><topic>outlier modeling</topic><topic>point cloud</topic><topic>Shape</topic><topic>shape detection</topic><topic>Signal processing algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerogiannis, Demetrios P.</creatorcontrib><creatorcontrib>Nikou, Christophoros</creatorcontrib><creatorcontrib>Likas, Aristidis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gerogiannis, Demetrios P.</au><au>Nikou, Christophoros</au><au>Likas, Aristidis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elimination of Outliers from 2-D Point Sets Using the Helmholtz Principle</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2015-10</date><risdate>2015</risdate><volume>22</volume><issue>10</issue><spage>1638</spage><epage>1642</epage><pages>1638-1642</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>A method for modeling and removing outliers from 2-D sets of scattered points is presented. The method relies on a principle due to Helmholtz stating that every large deviation from uniform noise should be perceptible, provided that the deviation is generated by an a contrario model of geometric structures. By assuming local linearity, we first employ a robust algorithm to model the local manifold of the corrupted data by local line segments. Our rationale is that long line segments should not be expected in a noisy set of points. This assumption leads to the modeling of the lengths of the line segments by a Pareto distribution, which is the adopted a contrario model for the observations. The model is successfully evaluated on two problems in computer vision: shape recovery and linear regression.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2015.2420714</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2015-10, Vol.22 (10), p.1638-1642
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_7081346
source IEEE Electronic Library (IEL)
subjects Computational modeling
Computer vision
Data models
Linear regression
Manifolds
Noise
outlier modeling
point cloud
Shape
shape detection
Signal processing algorithms
title Elimination of Outliers from 2-D Point Sets Using the Helmholtz Principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elimination%20of%20Outliers%20from%202-D%20Point%20Sets%20Using%20the%20Helmholtz%20Principle&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Gerogiannis,%20Demetrios%20P.&rft.date=2015-10&rft.volume=22&rft.issue=10&rft.spage=1638&rft.epage=1642&rft.pages=1638-1642&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2015.2420714&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2015_2420714%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7081346&rfr_iscdi=true