Elimination of Outliers from 2-D Point Sets Using the Helmholtz Principle
A method for modeling and removing outliers from 2-D sets of scattered points is presented. The method relies on a principle due to Helmholtz stating that every large deviation from uniform noise should be perceptible, provided that the deviation is generated by an a contrario model of geometric str...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2015-10, Vol.22 (10), p.1638-1642 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method for modeling and removing outliers from 2-D sets of scattered points is presented. The method relies on a principle due to Helmholtz stating that every large deviation from uniform noise should be perceptible, provided that the deviation is generated by an a contrario model of geometric structures. By assuming local linearity, we first employ a robust algorithm to model the local manifold of the corrupted data by local line segments. Our rationale is that long line segments should not be expected in a noisy set of points. This assumption leads to the modeling of the lengths of the line segments by a Pareto distribution, which is the adopted a contrario model for the observations. The model is successfully evaluated on two problems in computer vision: shape recovery and linear regression. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2015.2420714 |