A Simple Transformation for Near-Singular Integrals on Curvilinear Elements
It is difficult to evaluate the near-singular four-dimensional integrals in the Galerkin magnetic-field integral equations (MFIE), especially for the curvilinear elements. This communication presents a hyperbolic transformation to cancel the near singularities in the 1/R 2 kernel on curved quadrilat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2015-06, Vol.63 (6), p.2827-2833 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is difficult to evaluate the near-singular four-dimensional integrals in the Galerkin magnetic-field integral equations (MFIE), especially for the curvilinear elements. This communication presents a hyperbolic transformation to cancel the near singularities in the 1/R 2 kernel on curved quadrilateral elements, which is addressed theoretically and numerically. This method has a much simpler formula than the so-called DIRECTFN method, and its convergence rate may be much faster than the latter. This is demonstrated by evaluating the near-singular integral of a sharp-edged structure composed of two curvilinear quadrilaterals. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2015.2417897 |