Glove-Based Continuous Arabic Sign Language Recognition in User-Dependent Mode
In this paper, we propose a glove-based Arabic sign language recognition system using a novel technique for sequential data classification. We compile a sensor-based dataset of 40 sentences using an 80-word lexicon. In the dataset, hand movements are captured using two DG5-VHand data gloves. Data la...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on human-machine systems 2015-08, Vol.45 (4), p.526-533 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a glove-based Arabic sign language recognition system using a novel technique for sequential data classification. We compile a sensor-based dataset of 40 sentences using an 80-word lexicon. In the dataset, hand movements are captured using two DG5-VHand data gloves. Data labeling is performed using a camera to synchronize hand movements with their corresponding sign language words. Low-complexity preprocessing and feature extraction techniques are applied to capture and emphasize the temporal dependence of the data. Subsequently, a Modified k-Nearest Neighbor (MKNN) approach is used for classification. The proposed MKNN makes use of the context of feature vectors for the purpose of accurate classification. The proposed solution achieved a sentence recognition rate of 98.9%. The results are compared against an existing vision-based approach that uses the same set of sentences. The proposed solution is superior in terms of classification rates while eliminating restrictions of vision-based systems. |
---|---|
ISSN: | 2168-2291 2168-2305 |
DOI: | 10.1109/THMS.2015.2406692 |