Parameter estimation of two-dimensional moving average random fields
This paper considers the problem of estimating the parameters of two-dimensional (2-D) moving average random (MA) fields. We first address the problem of expressing the covariance matrix of nonsymmetrical half-plane, noncausal, and quarter-plane MA random fields in terms of the model parameters. Ass...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 1998-08, Vol.46 (8), p.2157-2165 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers the problem of estimating the parameters of two-dimensional (2-D) moving average random (MA) fields. We first address the problem of expressing the covariance matrix of nonsymmetrical half-plane, noncausal, and quarter-plane MA random fields in terms of the model parameters. Assuming the random field is Gaussian, we derive a closed-form expression for the Cramer-Rao lower bound (CRLB) on the error variance in jointly estimating the model parameters. A computationally efficient algorithm for estimating the parameters of the MA model is developed. The algorithm initially fits a 2-D autoregressive model to the observed field and then uses the estimated parameters to compute the MA model. A maximum-likelihood algorithm for estimating the MA model parameters is also presented. The performance of the proposed algorithms is illustrated by Monte-Carlo simulations and is compared with the Cramer-Rao bound. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/78.705427 |