Multimodal Manifold Analysis by Simultaneous Diagonalization of Laplacians

We construct an extension of spectral and diffusion geometry to multiple modalities through simultaneous diagonalization of Laplacian matrices. This naturally extends classical data analysis tools based on spectral geometry, such as diffusion maps and spectral clustering. We provide several syntheti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2015-12, Vol.37 (12), p.2505-2517
Hauptverfasser: Eynard, Davide, Kovnatsky, Artiom, Bronstein, Michael M., Glashoff, Klaus, Bronstein, Alexander M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct an extension of spectral and diffusion geometry to multiple modalities through simultaneous diagonalization of Laplacian matrices. This naturally extends classical data analysis tools based on spectral geometry, such as diffusion maps and spectral clustering. We provide several synthetic and real examples of manifold learning, object classification, and clustering, showing that the joint spectral geometry better captures the inherent structure of multi-modal data. We also show the relation of many previous approaches for multimodal manifold analysis to our framework.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2015.2408348