Rényi Entropies and Large Deviations for the First Match Function
We define the first match function Tn : C n → {1, ... , n} where C is a finite alphabet. For two copies of x 1 n ∈ C n , this function gives the minimum number of steps one has to slide one copy of x 1 n to get a match with the other one. For ergodic positive entropy processes, Saussol and coauthors...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2015-04, Vol.61 (4), p.1629-1639 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define the first match function Tn : C n → {1, ... , n} where C is a finite alphabet. For two copies of x 1 n ∈ C n , this function gives the minimum number of steps one has to slide one copy of x 1 n to get a match with the other one. For ergodic positive entropy processes, Saussol and coauthors proved the almost sure convergence of T n /n. We compute the large deviation properties of this function. We prove that this limit is related to the Rényi entropy function, which is also proved to exist. Our results hold under a condition easy to check which defines a large class of processes. We provide some examples. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2015.2406695 |