Rényi Entropies and Large Deviations for the First Match Function

We define the first match function Tn : C n → {1, ... , n} where C is a finite alphabet. For two copies of x 1 n ∈ C n , this function gives the minimum number of steps one has to slide one copy of x 1 n to get a match with the other one. For ergodic positive entropy processes, Saussol and coauthors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2015-04, Vol.61 (4), p.1629-1639
Hauptverfasser: Abadi, Miguel Natalio, Cardeno, Liliam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define the first match function Tn : C n → {1, ... , n} where C is a finite alphabet. For two copies of x 1 n ∈ C n , this function gives the minimum number of steps one has to slide one copy of x 1 n to get a match with the other one. For ergodic positive entropy processes, Saussol and coauthors proved the almost sure convergence of T n /n. We compute the large deviation properties of this function. We prove that this limit is related to the Rényi entropy function, which is also proved to exist. Our results hold under a condition easy to check which defines a large class of processes. We provide some examples.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2015.2406695