Remotely sensed data analysis using two neural networks and its application to land cover mapping

In recent works, the authors have proposed a hybrid system using a Kohonen's self-organization feature mapping preprocessor (SOM) and a multi-layered neural network processor (BPM) to analyze remotely sensed data, and demonstrated the applicability of SOM preprocessor by a principal component a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Murai, H., Omatu, S., Oe, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent works, the authors have proposed a hybrid system using a Kohonen's self-organization feature mapping preprocessor (SOM) and a multi-layered neural network processor (BPM) to analyze remotely sensed data, and demonstrated the applicability of SOM preprocessor by a principal component analysis (PCA). In the present paper, the authors empirically examine the significance of the principal components for the input pattern.
DOI:10.1109/IGARSS.1998.702920