A Task-level Pipelined Many-SIMD Augmented Reality Processor with Congestion-aware Network-on-Chip Scheduler

For all day long operable markerless augmented reality system, low-power BONE-AR processor is implemented to execute object recognition, camera pose estimation, and 3D graphics rendering in real-time for a HD resolution video input. BONE-AR adopts 6 clusters of heterogeneous SIMD processors distribu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE MICRO 2015-01, p.1-1
Hauptverfasser: Kim, Gyeonghoon, Kim, Donghyun, Park, Seongwook, Kim, Youchang, Lee, Kyuho, Hong, Injoon, Bong, Kyeongryeol, Yoo, Hoi-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE MICRO
container_volume
creator Kim, Gyeonghoon
Kim, Donghyun
Park, Seongwook
Kim, Youchang
Lee, Kyuho
Hong, Injoon
Bong, Kyeongryeol
Yoo, Hoi-Jun
description For all day long operable markerless augmented reality system, low-power BONE-AR processor is implemented to execute object recognition, camera pose estimation, and 3D graphics rendering in real-time for a HD resolution video input. BONE-AR adopts 6 clusters of heterogeneous SIMD processors distributed on the mesh topology network-on-chip (NoC) to exploit data-level parallelism and task-level parallelism. Visual attention algorithm reduces overall workload by removing background clutters from the input video frames, but also incurs NoC congestion due to dynamically fluctuating workload. We propose a congestion-aware scheduler (CAS) that detects and resolves the NoC congestion to prevent throughput degradation of task-level pipeline.
doi_str_mv 10.1109/MM.2015.2
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7006339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7006339</ieee_id><sourcerecordid>10_1109_MM_2015_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549-be3427d2b1c4d55be5a222b04735d3c113fa0d7c925114dc70e20e47c804002b3</originalsourceid><addsrcrecordid>eNo9kEtPAjEURhujiYguXLvp1kXx9mWZJRlfJIwSYT_pdC5QKTOkHST8ezEYV19ycvItDiG3HAacQ_ZQFAMBXA_EGenxTBqmuJLnpAfCCMaNFJfkKqUvANAChj0SRnRu05oF_MZAp36LwTdY08I2BzYbF090tFtusOmO7BNt8N2BTmPrMKU20r3vVjRvmyWmzrcNs3sbkb5jt2_jmh1BvvJbOnMrrHcB4zW5WNiQ8OZv-2T-8jzP39jk43WcjybMaZWxCqUSphYVd6rWukJthRAVKCN1LR3ncmGhNi4TmnNVOwMoAJVxQ1AAopJ9cn-6dbFNKeKi3Ea_sfFQcih_K5VFUf5WKsXRvTu5HhH_PQPwKGUmfwCnR2Kb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Task-level Pipelined Many-SIMD Augmented Reality Processor with Congestion-aware Network-on-Chip Scheduler</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Gyeonghoon ; Kim, Donghyun ; Park, Seongwook ; Kim, Youchang ; Lee, Kyuho ; Hong, Injoon ; Bong, Kyeongryeol ; Yoo, Hoi-Jun</creator><creatorcontrib>Kim, Gyeonghoon ; Kim, Donghyun ; Park, Seongwook ; Kim, Youchang ; Lee, Kyuho ; Hong, Injoon ; Bong, Kyeongryeol ; Yoo, Hoi-Jun</creatorcontrib><description>For all day long operable markerless augmented reality system, low-power BONE-AR processor is implemented to execute object recognition, camera pose estimation, and 3D graphics rendering in real-time for a HD resolution video input. BONE-AR adopts 6 clusters of heterogeneous SIMD processors distributed on the mesh topology network-on-chip (NoC) to exploit data-level parallelism and task-level parallelism. Visual attention algorithm reduces overall workload by removing background clutters from the input video frames, but also incurs NoC congestion due to dynamically fluctuating workload. We propose a congestion-aware scheduler (CAS) that detects and resolves the NoC congestion to prevent throughput degradation of task-level pipeline.</description><identifier>ISSN: 0272-1732</identifier><identifier>EISSN: 1937-4143</identifier><identifier>DOI: 10.1109/MM.2015.2</identifier><identifier>CODEN: IEMIDZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Estimation ; Feature extraction ; Mobile communication ; Object recognition ; Pipelines ; Streaming media</subject><ispartof>IEEE MICRO, 2015-01, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7006339$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7006339$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Gyeonghoon</creatorcontrib><creatorcontrib>Kim, Donghyun</creatorcontrib><creatorcontrib>Park, Seongwook</creatorcontrib><creatorcontrib>Kim, Youchang</creatorcontrib><creatorcontrib>Lee, Kyuho</creatorcontrib><creatorcontrib>Hong, Injoon</creatorcontrib><creatorcontrib>Bong, Kyeongryeol</creatorcontrib><creatorcontrib>Yoo, Hoi-Jun</creatorcontrib><title>A Task-level Pipelined Many-SIMD Augmented Reality Processor with Congestion-aware Network-on-Chip Scheduler</title><title>IEEE MICRO</title><addtitle>MM</addtitle><description>For all day long operable markerless augmented reality system, low-power BONE-AR processor is implemented to execute object recognition, camera pose estimation, and 3D graphics rendering in real-time for a HD resolution video input. BONE-AR adopts 6 clusters of heterogeneous SIMD processors distributed on the mesh topology network-on-chip (NoC) to exploit data-level parallelism and task-level parallelism. Visual attention algorithm reduces overall workload by removing background clutters from the input video frames, but also incurs NoC congestion due to dynamically fluctuating workload. We propose a congestion-aware scheduler (CAS) that detects and resolves the NoC congestion to prevent throughput degradation of task-level pipeline.</description><subject>Cameras</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Mobile communication</subject><subject>Object recognition</subject><subject>Pipelines</subject><subject>Streaming media</subject><issn>0272-1732</issn><issn>1937-4143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEURhujiYguXLvp1kXx9mWZJRlfJIwSYT_pdC5QKTOkHST8ezEYV19ycvItDiG3HAacQ_ZQFAMBXA_EGenxTBqmuJLnpAfCCMaNFJfkKqUvANAChj0SRnRu05oF_MZAp36LwTdY08I2BzYbF090tFtusOmO7BNt8N2BTmPrMKU20r3vVjRvmyWmzrcNs3sbkb5jt2_jmh1BvvJbOnMrrHcB4zW5WNiQ8OZv-2T-8jzP39jk43WcjybMaZWxCqUSphYVd6rWukJthRAVKCN1LR3ncmGhNi4TmnNVOwMoAJVxQ1AAopJ9cn-6dbFNKeKi3Ea_sfFQcih_K5VFUf5WKsXRvTu5HhH_PQPwKGUmfwCnR2Kb</recordid><startdate>20150112</startdate><enddate>20150112</enddate><creator>Kim, Gyeonghoon</creator><creator>Kim, Donghyun</creator><creator>Park, Seongwook</creator><creator>Kim, Youchang</creator><creator>Lee, Kyuho</creator><creator>Hong, Injoon</creator><creator>Bong, Kyeongryeol</creator><creator>Yoo, Hoi-Jun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150112</creationdate><title>A Task-level Pipelined Many-SIMD Augmented Reality Processor with Congestion-aware Network-on-Chip Scheduler</title><author>Kim, Gyeonghoon ; Kim, Donghyun ; Park, Seongwook ; Kim, Youchang ; Lee, Kyuho ; Hong, Injoon ; Bong, Kyeongryeol ; Yoo, Hoi-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549-be3427d2b1c4d55be5a222b04735d3c113fa0d7c925114dc70e20e47c804002b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cameras</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Mobile communication</topic><topic>Object recognition</topic><topic>Pipelines</topic><topic>Streaming media</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Gyeonghoon</creatorcontrib><creatorcontrib>Kim, Donghyun</creatorcontrib><creatorcontrib>Park, Seongwook</creatorcontrib><creatorcontrib>Kim, Youchang</creatorcontrib><creatorcontrib>Lee, Kyuho</creatorcontrib><creatorcontrib>Hong, Injoon</creatorcontrib><creatorcontrib>Bong, Kyeongryeol</creatorcontrib><creatorcontrib>Yoo, Hoi-Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE MICRO</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Gyeonghoon</au><au>Kim, Donghyun</au><au>Park, Seongwook</au><au>Kim, Youchang</au><au>Lee, Kyuho</au><au>Hong, Injoon</au><au>Bong, Kyeongryeol</au><au>Yoo, Hoi-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Task-level Pipelined Many-SIMD Augmented Reality Processor with Congestion-aware Network-on-Chip Scheduler</atitle><jtitle>IEEE MICRO</jtitle><stitle>MM</stitle><date>2015-01-12</date><risdate>2015</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0272-1732</issn><eissn>1937-4143</eissn><coden>IEMIDZ</coden><abstract>For all day long operable markerless augmented reality system, low-power BONE-AR processor is implemented to execute object recognition, camera pose estimation, and 3D graphics rendering in real-time for a HD resolution video input. BONE-AR adopts 6 clusters of heterogeneous SIMD processors distributed on the mesh topology network-on-chip (NoC) to exploit data-level parallelism and task-level parallelism. Visual attention algorithm reduces overall workload by removing background clutters from the input video frames, but also incurs NoC congestion due to dynamically fluctuating workload. We propose a congestion-aware scheduler (CAS) that detects and resolves the NoC congestion to prevent throughput degradation of task-level pipeline.</abstract><pub>IEEE</pub><doi>10.1109/MM.2015.2</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0272-1732
ispartof IEEE MICRO, 2015-01, p.1-1
issn 0272-1732
1937-4143
language eng
recordid cdi_ieee_primary_7006339
source IEEE Electronic Library (IEL)
subjects Cameras
Estimation
Feature extraction
Mobile communication
Object recognition
Pipelines
Streaming media
title A Task-level Pipelined Many-SIMD Augmented Reality Processor with Congestion-aware Network-on-Chip Scheduler
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A12%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Task-level%20Pipelined%20Many-SIMD%20Augmented%20Reality%20Processor%20with%20Congestion-aware%20Network-on-Chip%20Scheduler&rft.jtitle=IEEE%20MICRO&rft.au=Kim,%20Gyeonghoon&rft.date=2015-01-12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0272-1732&rft.eissn=1937-4143&rft.coden=IEMIDZ&rft_id=info:doi/10.1109/MM.2015.2&rft_dat=%3Ccrossref_RIE%3E10_1109_MM_2015_2%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7006339&rfr_iscdi=true