A Task-level Pipelined Many-SIMD Augmented Reality Processor with Congestion-aware Network-on-Chip Scheduler
For all day long operable markerless augmented reality system, low-power BONE-AR processor is implemented to execute object recognition, camera pose estimation, and 3D graphics rendering in real-time for a HD resolution video input. BONE-AR adopts 6 clusters of heterogeneous SIMD processors distribu...
Gespeichert in:
Veröffentlicht in: | IEEE MICRO 2015-01, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For all day long operable markerless augmented reality system, low-power BONE-AR processor is implemented to execute object recognition, camera pose estimation, and 3D graphics rendering in real-time for a HD resolution video input. BONE-AR adopts 6 clusters of heterogeneous SIMD processors distributed on the mesh topology network-on-chip (NoC) to exploit data-level parallelism and task-level parallelism. Visual attention algorithm reduces overall workload by removing background clutters from the input video frames, but also incurs NoC congestion due to dynamically fluctuating workload. We propose a congestion-aware scheduler (CAS) that detects and resolves the NoC congestion to prevent throughput degradation of task-level pipeline. |
---|---|
ISSN: | 0272-1732 1937-4143 |
DOI: | 10.1109/MM.2015.2 |