On the Existence of Asymptotically Good Linear Codes in Minor-Closed Classes
Let C = (C 1 , C 2 , ...) be a sequence of codes such that each C i is a linear [n i , k i , d i ]-code over some fixed finite field F, where n i is the length of the code words, k i is the dimension, and d i is the minimum distance. We say that C is asymptotically good if, for some ε > 0 and for...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2015-03, Vol.61 (3), p.1153-1158 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let C = (C 1 , C 2 , ...) be a sequence of codes such that each C i is a linear [n i , k i , d i ]-code over some fixed finite field F, where n i is the length of the code words, k i is the dimension, and d i is the minimum distance. We say that C is asymptotically good if, for some ε > 0 and for all i ∈ ℤ >0 , we have n i ≥ i and min(k i /n i , d i /n i ) ≥ ε. Sequences of asymptotically good codes exist. We prove that if C is a class of GF(p n )-linear codes (where p is prime and n ≥ 1), closed under puncturing and shortening, and if C contains an asymptotically good sequence, then C must contain all GF(p)-linear codes. Our proof relies on a powerful new result from matroid structure theory. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2015.2389248 |