Emission Behavior of Three Conditioned Carbon Fiber Cathode Types in UHV-Sealed Tubes at 200 A/ \mathrm

When subjected to high electric fields in vacuum, carbon fiber cathodes produce intense electron beams suitable for high-power microwave (HPM) generation at very high current densities. However, the production mechanisms of these intense electron beams are not fully understood. This paper presents t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2014-12, Vol.42 (12), p.3982-3988
Hauptverfasser: Parson, Jonathan M., Lynn, Curtis F., Mankowski, John J., Neuber, Andreas A., Dickens, James C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When subjected to high electric fields in vacuum, carbon fiber cathodes produce intense electron beams suitable for high-power microwave (HPM) generation at very high current densities. However, the production mechanisms of these intense electron beams are not fully understood. This paper presents the postmortem examination of three conditioned carbon fiber cathode types. The three cathode types consist of an uncoated, bare unimodal fiber structure, a bare bimodal fiber structure, and a cesium-iodide (CsI)-coated bimodal fiber structure, all with identical fiber coverage of 2% by area. Each cathode was conditioned prior to testing by single pulse operation driven by an 80 J Marx generator for 10 000 pulses. HPM, voltage, and current waveforms of each cathode are presented. The bare bimodal cathode radiated more microwave power than the CsI-coated cathode and bare unimodal cathode. Scanning electron microscopy imagery presents evidence of two emission mechanisms: 1) explosive electron emission and 2) surface flashover, which both were found on the CsI-coated cathode. In addition, no evidence of surface flashover was found on either uncoated cathode.
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2014.2363462